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Abstract

This thesis introduces systematic ways to use mixed-integer programming (MIP) to
solve difficult nonconvex optimization problems arising in application areas as varied
as operations, robotics, power systems, and machine learning. Our goal is to produce
MIP formulations that perform extremely well in practice, requiring us to balance
qualities often in opposition: formulation size, strength, and branching behavior.

We start by studying a combinatorial framework for building MIP formulations,
and present a complete graphical characterization of its expressive power. Our ap-
proach allows us to produce strong and small formulations for a variety of structures,
including piecewise linear functions, relaxations for multilinear functions, and obstacle
avoidance constraints.

Second, we present a geometric way to construct MIP formulations, and use it to
investigate the potential advantages of general integer (as opposed to binary) MIP
formulations. We are able to apply our geometric construction method to piecewise
linear functions and annulus constraints, producing small, strong general integer MIP
formulations that induce favorable behavior in a branch-and-bound algorithm.

Third, we perform an in-depth computational study of MIP formulations for non-
convex piecewise linear functions, showing that the new formulations devised in this
thesis outperform existing approaches, often substantially (e.g. solving to optimality
in orders of magnitude less time). We also highlight how high-level, easy-to-use com-
putational tools, built on top of the JuMP modeling language, can help make these
advanced formulations accessible to practitioners and researchers. Furthermore, we
study high-dimensional piecewise linear functions arising in the context of deep learn-
ing, and develop a new strong formulation and valid inequalities for this structure.

We close the thesis by answering a speculative question: Given a disjunctive
constraint, what can we reasonably sacrifice in order to construct MIP formulations
with very few integer variables? We show that, if we allow our formulations to
introduce spurious “integer holes” in their interior, we can produce strong formulations
for any disjunctive constraint with only two integer variables and a linear number of
inequalities (and reduce this further to a constant number for specific structures).
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We provide a framework to encompass these MIP-with-holes formulations, and show
how to modify standard MIP algorithmic tools such as branch-and-bound and cutting
planes to handle the holes.

Thesis Supervisor: Juan Pablo Vielma
Title: Richard S. Leghorn (1939) Career Development Associate Professor of Opera-
tions Research
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Chapter 1

Preliminaries.

The aim of this thesis is to develop new methods to solve difficult optimization prob-

lems, efficiently. The class of “difficult” optimization problems we focus on are non-

convex, and possibly discrete. Nonconvex optimization is difficult from a complexity

perspective, even for restrictive subclasses such as nonconvex quadratic optimiza-

tion [112]. Therefore, we mean “efficiently” in a practical sense, and we will endeavor

to produce provably optimal solutions (or rigorous bounds on suboptimality) in a

reasonable amount of time. At the end of this chapter, we will present a taxonomy

of nonconvex structures that arise in a number of compelling applications. After

this, we spend the rest of this thesis developing a number of advanced techniques to

build good representations, or formulations, for them, and apply these techniques to

produce substantial speed-ups over existing approaches.

1.1 Mixed-integer programming and formulations

Suppose that we have an optimization problem of the form

min
𝑥,𝑦

𝑏 ¨ 𝑥` 𝑐 ¨ 𝑦 (1.1a)

s.t. 𝑥 P 𝐷 (1.1b)

p𝑥, 𝑦q P 𝑋, (1.1c)
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where 𝑋 is a convex set, and 𝐷 is a nonconvex set that describes some portion of the

feasible region.

In this context, it is well known that merely convexifying 𝐷 by replacing it with its

convex hull (i.e. changing (1.1b) to 𝑥 P Convp𝐷q) is not sufficient for solving (1.1)1.

Instead, we will add auxiliary variables 𝑤 and 𝑧 and craft a linear programming (LP)

relaxation given by an inequality (outer) description as

𝑅 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p𝑥,𝑤, 𝑧q P R𝑛`𝑝`𝑟

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

𝑙𝑥 ď 𝑥 ď 𝑢𝑥

𝑙𝑤 ď 𝑤 ď 𝑢𝑤

𝑙𝑧 ď 𝑧 ď 𝑢𝑧

𝐴𝑥`𝐵𝑤 ` 𝐶𝑧 ď 𝑑

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

. (1.2)

We will say say that

𝐹 “ t p𝑥, 𝑦, 𝑧q P 𝑅 | 𝑧 P Z𝑟
u (1.3)

is a mixed-integer programming (MIP) formulation for 𝐷 if

𝐷 “ Proj𝑥p𝐹 q
def
“ t 𝑥 | D𝑤, 𝑧 s.t. p𝑥,𝑤, 𝑧q P 𝐹 u .

We call 𝑥 the original variables, 𝑤 the (optional) continuous auxiliary variables, and

𝑧 the integer variables of our formulation. An important subclass of formulations will

be binary MIP formulations, where 𝑙𝑧 “ 0𝑟 and 𝑢𝑧 “ 1𝑟. Otherwise, we call 𝐹 a

general integer MIP formulation.

We can use our formulation to solve the optimization problem (1.1) as

min
𝑥,𝑦,𝑧,𝑤

𝑏 ¨ 𝑥` 𝑐 ¨ 𝑦 (1.4a)

s.t. p𝑥,𝑤, 𝑧q P 𝑅 (1.4b)

p𝑥, 𝑦q P 𝑋 (1.4c)

𝑧 P Z𝑟. (1.4d)

1As a simple example, take 𝑏 “ 𝑐 “ 1, 𝐷 “ t´1, 1u, and 𝑋 “ R2
ě0. The optimal solution to (1.1)

is p𝑥, 𝑦q “ p1, 0q with cost 1, while the convexified version has optimal solution p𝑥, 𝑦q “ p0, 0q with
cost 0.
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This is a mixed-integer programming problem, with a convex relaxation and non-

convexity arising only from the integrality imposed on the 𝑧 variables. Of course,

realistic optimization problems may contain a number of nonconvexities, meaning we

will need to repeat this procedure.

Mixed-integer programming is surprisingly expressive class of optimization prob-

lems, capable of modeling many complex problems of interest throughout opera-

tions [38, 39, 90], analytics [18, 19], engineering [56, 60, 124], and robotics and con-

trol [15, 46, 47, 49, 85, 103, 114], to name just a few. Moreover, there exist sophisti-

cated algorithms–and corresponding high-quality software implementations–that can

solve many problems of this form efficiently in practice [24, 74]. For the remainder, we

will focus on building formulations for nonconvex substructures like 𝐷 individually,

and then composing them afterwards as in (1.4).

1.2 Disjunctive constraints

A central modeling primitive in mathematical optimization is the disjunctive con-

straint: any feasible solution must satisfy at least one of some fixed, finite collection

of alternatives. This type of constraint is general enough to capture structures as di-

verse as boolean satisfiability, complementarity constraints, special-ordered sets, and

(bounded) integrality. The special case of polyhedral disjunctive constraints corre-

sponds to the form

𝑥 P 𝐷
def
“

𝑑
ď

𝑖“1

𝑃 𝑖, (1.5)

where we have that each alternative 𝑃 𝑖 Ď R𝑛 is a polyhedron. We will make the

following simplifying assumption on the structure of 𝐷.

Assumption 1. There are a finite number of alternatives 𝑃 𝑖, and each is a rational,

bounded polyhedron.

However, we mention below ways to extend our results to the unbounded case.
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1.2.1 Combinatorial disjunctive constraints

We will spend much of this thesis focusing on a particular class of disjunctive con-

straints that are both incredibly expressive and readily amenable to advanced formu-

lation construction techniques. In particular, we will focus on disjunctive constraints

where each alternative is a face of the standard simplex.

Definition 1. Take some finite set 𝑉 Ă R𝑛. A combinatorial disjunctive constraint

(CDC) given by the family of sets 𝒯 “ p𝑇 𝑖 Ď 𝑉 q𝑑𝑖“1 is a disjunctive constraint of the

form

𝜆 P CDCp𝒯 q def
“

𝑑
ď

𝑖“1

𝑃 p𝑇 𝑖
q,

where

• suppp𝜆q
def
“ t 𝑣 P 𝑉 | 𝜆𝑣 ‰ 0 u is the set of nonzero components of 𝜆,

• ∆𝑉 def
“
 

𝜆 P R𝑉
ě0

ˇ

ˇ

ř

𝑣P𝑉 𝜆𝑣 “ 1
(

is the standard simplex, and

• 𝑃 p𝑇 q
def
“

 

𝜆 P ∆𝑉
ˇ

ˇ suppp𝜆q Ď 𝑇
(

is the face that 𝑇 Ď 𝑉 induces on the stan-

dard simplex.

We call 𝑉 the ground set for the constraint.

Although combinatorial disjunctive constraints can arise naturally as primitive

constraints (see Chapters 1.3.3 and 1.3.4), they also offer a principled way to construct

formulations for arbitrary disjunctive constraints.

Due to the celebrated Minkowski-Weyl Theorem (e.g. [34, Corollary 3.14]), we

can write each of our polyhedral alternatives 𝑃 𝑖 as the convex combination of its

extreme points 𝑇 𝑖 “ extp𝑃 𝑖q:

𝑃 𝑖
“ Convp𝑇 𝑖

q
def
“

#

ÿ

𝑣P𝑇 𝑖

𝜆𝑣𝑣

ˇ

ˇ

ˇ

ˇ

ˇ

𝜆 P ∆𝑇 𝑖

+

. (1.6)

Suppose we add additional components to the convex multipliers 𝜆, so that 𝜆 P ∆𝑉
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for 𝑉 “
Ť𝑑

𝑖“1 extp𝑃 𝑖q. Then (1.6) is equivalent to

𝑃 𝑖
“

#

ÿ

𝑣P𝑉

𝜆𝑣𝑣

ˇ

ˇ

ˇ

ˇ

ˇ

𝜆 P 𝑃 p𝑇 𝑖
q

+

,

where the constraint 𝜆 P 𝑃 p𝑇 𝑖q ensures that each new component of 𝜆 not corre-

sponding to an extreme point of 𝑃 𝑖 must be zero. If we take the family of sets

𝒯 “ p𝑇 𝑖 “ extp𝑃 𝑖qq𝑑𝑖“1, then the combinatorial disjunctive constraint approach gives

us a way to formulate a disjunctive set as

𝐷 ”

𝑑
ď

𝑖“1

𝑃 𝑖
“

#

ÿ

𝑣P𝑉

𝜆𝑣𝑣

ˇ

ˇ

ˇ

ˇ

ˇ

𝜆 P CDCp𝒯 q

+

. (1.7)

Note that all the nonconvexity of the set 𝐷 has now been encapsulated in CDCp𝒯 q.

Therefore, we can focus on formulating CDCp𝒯 q, which will often be much simpler

than formulating 𝐷 directly, and then easily construct a formulation for 𝐷 by ap-

plying a linear transformation to the 𝜆 variables. The disjunctive constraints are

combinatorial since they rely on the shared structure of the extreme points among

the different alternatives, captured in the family of sets 𝒯 .

Moreover, it is straightforward to extend the combinatorial disjunctive constraint

approach to accommodate unbounded alternatives (provided standard representabil-

ity conditions are satisfied [72] [130, Proposition 11.2]) as

𝐷 “

#

ÿ

𝑣P𝑉

𝜆𝑣𝑣 `
ÿ

𝑟P𝑅

𝜇𝑟𝑟

ˇ

ˇ

ˇ

ˇ

ˇ

𝜆 P CDCp𝒯 q, 𝜇 P R𝑅
ě0

+

, (1.8)

where 𝑅 is the shared set of extreme rays for each of the 𝑃 𝑖. We offer this as

justification for Assumption 1, as formulating the unbounded case is a straightforward

extension.

Much of the work of this thesis will be in deriving formulations for CDCp𝒯 q,

given a particular family of sets 𝒯 over some ground set 𝑉 . We make the following

assumptions about 𝒯 that are without loss of generality.

Assumption 2. We assume the following about 𝒯 “ p𝑇 𝑖 Ď 𝑉 q𝑑𝑖“1.
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• The constraint is disjunctive: |𝒯 | ą 1.

• Each alternative is nonempty: 𝑇 ‰ H for all 𝑇 P 𝒯 .

• 𝒯 is irredundant: there do not exist distinct 𝑇, 𝑇 1 P 𝒯 such that 𝑇 Ď 𝑇 1.

• 𝒯 covers the ground set:
Ť𝑑

𝑖“1 𝑇
𝑖 “ 𝑉 .

We will say that a set 𝑇 Ď 𝑉 is a feasible set with respect to (w.r.t.) CDCp𝒯 q

if 𝑃 p𝑇 q Ď CDCp𝒯 q (equivalently, if 𝑇 Ď 𝑇 1 for some 𝑇 1 P 𝒯 ) and that it is an

infeasible set otherwise. Notationally, given the family of sets 𝒯 “ p𝑇 𝑖 Ď 𝑉 q𝑑𝑖“1, we

will find it useful to refer to the corresponding family of faces of the standard simplex

𝒫p𝒯 q def
“ p𝑃 p𝑇 𝑖qq𝑑𝑖“1, which are the alternatives of the disjunctive constraint which we

ultimately will formulate.

1.2.2 Combinatorial disjunctive constraints and data indepen-

dence

One distinct advantage of the combinatorial disjunctive constraint approach is that

the formulation (1.7) allows us to divorce the problem-specific data (i.e. the values

𝑣 P 𝑉 ) from the underlying combinatorial structure in 𝒯 . As such, we can construct

a single, strong formulation for a given structure CDCp𝒯 q, and this formulation will

remain valid for transformations of the data, so long as this transformation suffi-

ciently preserves the combinatorial structure of CDCp𝒯 q. For instance, if we formu-

late
Ť𝑑

𝑖“1 𝑃
𝑖 via its corresponding combinatorial disjunctive constraint CDCp𝒯 q, and

then change the data to produce a related disjunctive constraint
Ť𝑑

𝑖“1 𝑃
𝑖, a sufficient

condition for our formulation of CDCp𝒯 q to yield a valid formulation for
Ť𝑑

𝑖“1 𝑃
𝑖 is

the existence of a bijection 𝜋 : 𝑉 Ñ 𝑉 (with 𝑉 “
Ť𝑑

𝑖“1 extp𝑃 𝑖q and 𝑉 “
Ť𝑑

𝑖“1 extp𝑃 𝑖q)

such that

𝑣 P extp𝑃 𝑖
q ðñ 𝜋p𝑣q P extp𝑃 𝑖

q @𝑖 P J𝑑K, 𝑣 P 𝑉, (1.9)

where J𝑑K def
“ t1, . . . , 𝑑u. In this way, we can construct a single small, strong formula-

tion for CDCp𝒯 q, and use it repeatedly for many different “combinatorially equivalent”

instances of the same constraint.
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We note that one subtle disadvantage of this data-agnostic approach is that, even

if condition (1.9) is satisfied, the resulting formulation for
Ť𝑑

𝑖“1 𝑃
𝑖 may be larger

than necessary. An extreme manifestation of this would be when the new polyhedra

p𝑃 𝑖q𝑑𝑖“1 are such that 𝑃 𝑖 Ď 𝑃 1 for all 𝑖 P J𝑑K. In this case,
Ť𝑑

𝑖“1 𝑃
𝑖 “ 𝑃 1 and

the constraint is no longer truly disjunctive, meaning it can be modeled directly

as a LP. Less pathological cases could occur where some subset of the disjunctive

sets become redundant after changing the problem data. However, we note that in

many of the applications considered in this work, the combinatorial representation

leads to redundancy of this form only in rare pathological cases (this is true of the

constraints in Chapter 1.3.2, for example). In other cases we will take care to consider,

for example, the geometric structure of the data before constructing the disjunctive

constraint (e.g. our results in Chapter 2.3.3).

1.3 Motivating problems

We now present constraints, arising in a number of application areas across engineer-

ing, robotics, power systems, and machine learning, that we will return to throughout.

The first seven will fall neatly into the combinatorial disjunctive constraint frame-

work. However, the last does not, and we will explore other techniques to construct

strong formulations for it in Chapter 4.

1.3.1 Modeling discrete alternatives

The special-ordered set (SOS) constraints introduced by Beale and Tomlin [13] are

a classical family of constraints with numerous applications throughout operations

research. The SOS constraint of type 1 (SOS1) is given by the family of sets 𝒯 SOS1
𝑁

def
“

pt𝑖uq𝑁𝑣“1, and can be used to model discrete alternatives: given 𝑁 distinct points

t𝑣𝑖u𝑁𝑖“1 Ă R𝑛,

𝑥 P t𝑣𝑖u𝑁𝑖“1 ðñ 𝑥 “
𝑁
ÿ

𝑖“1

𝜆𝑖𝑣
𝑖 for some 𝜆 P CDCp𝒯 SOS1

𝑁 q.
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Notationally, we will refer to the SOS1 constraint on 𝑁 components (i.e. given by

𝒯 SOS1
𝑁 with ground set 𝑉 “ J𝑁K) as SOS1(𝑁). In the following subsections, we will

present other types of SOS constraints.

1.3.2 Piecewise linear functions

Consider an optimization problem of the form min𝑥PΩ 𝑓p𝑥q, where Ω Ď R𝑛 and 𝑓 :

Ω Ď R𝑛 Ñ R is a piecewise linear function. That is, 𝑓 can be described by a partition

of the domain Ω into a finite family t𝐶𝑖u𝑑𝑖“1 of polyhedral pieces, where for each piece

𝐶𝑖 there is an affine function 𝑓 𝑖 : 𝐶𝑖 Ñ R where 𝑓p𝑥q “ 𝑓 𝑖p𝑥q for each 𝑥 P 𝐶𝑖. In

the same vein, we may consider an optimization problem where the feasible region is

(partially) defined by a constraint of the form 𝑓p𝑥q ď 0, where 𝑓 is piecewise linear.

𝑥

𝑦

grp𝑓q

𝑥1

𝑥2

𝑦

grp𝑓q

Figure 1-1: (Left) A univariate piecewise linear function, and (Right) a bivariate
piecewise linear function with a grid triangulated domain.

The potential applications for this class of optimization problems are legion. Piece-

wise linear functions arise naturally throughout operations [38, 39, 90] and engineer-

ing [56, 60, 124]. They are a natural choice for approximating nonlinear functions,

as they often lead to optimization problems that are easier to solve than the original

problem [16, 17, 28, 58, 82, 106, 104]. For example, there has been recently been

significant interest in using piecewise linear functions to approximate complex non-

linearities arising gas network optimization problems [32, 33, 101, 97, 105, 125]; see

[80] for a recent book on the subject.
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If the function 𝑓 happens to be convex, it is possible to reformulate our opti-

mization problem into an equivalent LP problem (provided that Ω is polyhedral)

However, if 𝑓 is nonconvex, this problem is NP-hard in general [78]. A number of

specialized algorithms for solving piecewise linear optimization problems have been

proposed over the years [13, 45, 44, 78, 128]. Instead, we will focus on MIP for-

mulations for piecewise linear function, an active and fruitful area of research for

decades [10, 38, 41, 42, 72, 71, 77, 89, 96, 99, 111, 123, 135, 133, 137].

We consider continuous2 piecewise linear functions 𝑓 : Ω Ñ R, where Ω Ă R𝑛

is bounded. We will describe 𝑓 in terms of the domain pieces t𝐶𝑖 Ď Ωu𝑑𝑖“1 and the

corresponding affine functions t𝑓 𝑖u𝑑𝑖“1. We assume that the pieces cover the domain

Ω, and that their relative interiors do not overlap. Furthermore, we assume that

our function 𝑓 is non-separable and cannot be decomposed as the sum of lower-

dimensional piecewise linear functions. This is without loss of generality, as if such

a decomposition exists, we could apply our formulation techniques to the individual

pieces separately. Finally, we will spend a substantial amount time on the regime

where the dimension 𝑛 of the domain is relatively small: when 𝑓 is either univariate

(𝑛 “ 1) or bivariate (𝑛 “ 2) with a grid triangulated domain; see Figure 1-1 for an

illustrative example of each.

In order to solve an optimization problem containing 𝑓 , we will construct a for-

mulation for its graph

grp𝑓 ; Ωq
def
“ t p𝑥, 𝑓p𝑥qq | 𝑥 P Ω u .

We can write this graph disjunctively as grp𝑓q “
Ť𝑑

𝑖“1 𝑃
𝑖, where each alternative 𝑃 𝑖 “

t p𝑥, 𝑓 𝑖p𝑥qq | 𝑥 P 𝐶𝑖 u is a segment of the graph. We can then take 𝒯 “ pextp𝐶𝑖qq𝑑𝑖“1,

formulate CDCp𝒯 q, and express the graph as

grp𝑓q “

#

ÿ

𝑣P𝑉

𝜆𝑣p𝑣, 𝑓p𝑣qq

ˇ

ˇ

ˇ

ˇ

ˇ

𝜆 P CDCp𝒯 q

+

, (1.10)

where we will use the notation grp𝑓q ” grp𝑓 ; Ωq when Ω is clear from context.

2The results to follow can potentially be extended to discontinuous piecewise linear functions by
working instead with the epigraph of 𝑓 ; we point the interested reader to [133, 134].
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Univariate piecewise linear functions

For univariate piecewise linear functions (i.e. Ω Ă R), the corresponding combina-

torial disjunctive constraint has a particularly nice structure. The domain partition

will consist of 𝑑 adjacent intervals 𝐶𝑖 “ r𝜏 𝑖, 𝜏 𝑖`1s, given by 𝑁 ” 𝑑 ` 1 breakpoints

𝜏 1 ă 𝜏 2 ă ¨ ¨ ¨ ă 𝜏𝑁 that we presume are distinct. In particular, the family of sets will

be equivalent to the special-ordered set of type 2 (SOS2) constraint, which is defined

as 𝒯 SOS2
𝑑

def
“ pt𝑖, 𝑖` 1uq𝑑𝑖“1. In words, the constraint 𝜆 P CDCp𝒯 SOS2

𝑑 q requires that at

most two components of 𝜆 may be nonzero, and that these nonzero components must

be consecutive in the ordering on 𝑉 “ J𝑁K. We will refer to the SOS2 constraint on

𝑁 ” 𝑑` 1 components as SOS2(𝑁).

As long as the ordering of the breakpoints is preserved, it is easy to see that

condition (1.9) will be satisfied for any transformations of the problem data. Fur-

thermore, the only case in which knowledge of the specific data tp𝜏 𝑖, 𝑓p𝜏 𝑖qqu𝑑𝑖“1 allows

the simplification of the original disjunctive representation of grp𝑓q is when 𝑓 is affine

in on two adjacent intervals, e.g. affine over r𝜏 𝑖, 𝜏 𝑖`2s for some 𝑖 P J𝑑 ´ 1K. There-

fore, the potential disadvantage of disregarding the specific data when formulating

the constraint occurs only in rare pathological cases which are easy to detect.

Example 1 (A univariate piecewise linear function). Consider the univariate piece-

wise linear function 𝑓 : r0, 4s Ñ R. We decompose the domain into the four pieces

𝐶1 “ r0, 1s, 𝐶2 “ r1, 2s, 𝐶3 “ r2, 3s, and 𝐶4 “ r3, 4s, and describe the function as

𝑥 P 𝐶1
ùñ 𝑓p𝑥q “ 4𝑥, 𝑥 P 𝐶2

ùñ 𝑓p𝑥q “ 3𝑥` 1, (1.11a)

𝑥 P 𝐶3
ùñ 𝑓p𝑥q “ 2𝑥` 3, 𝑥 P 𝐶4

ùñ 𝑓p𝑥q “ 𝑥` 6. (1.11b)

The graph of the piecewise linear function is then

grp𝑓q “
 

p𝑥, 4𝑥q
ˇ

ˇ 𝑥 P 𝐶1
(

Y
 

p𝑥, 3𝑥` 1q
ˇ

ˇ 𝑥 P 𝐶2
(

Y

 

p𝑥, 2𝑥` 3q
ˇ

ˇ 𝑥 P 𝐶3
(

Y
 

p𝑥, 𝑥` 6q
ˇ

ˇ 𝑥 P 𝐶4
(

.

Moreover, the function has 𝑑 “ 4 segments, and is given by the breakpoints t𝜏 𝑖 “
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p𝑖 ´ 1qu4𝑖“1. Taking, without loss of generality (w.l.o.g.), the ground set as 𝑉 “ J5K,

we can observe that

p𝑥, 𝑦q P grp𝑓q ðñ p𝑥, 𝑦q “
ÿ

𝑣P𝑉

p𝜏 𝑣, 𝑓p𝜏 𝑣qq𝜆𝑣 for some 𝜆 P CDCp𝒯 SOS2
4 q.

Bivariate piecewise linear functions and grid triangulations

Consider a (potentially nonconvex) region Ω Ă R2 in the plane. We would like to

model a (also potentially nonconvex) piecewise linear function 𝑓 with domain over Ω;

see Figure 1-1 for an illustration. If we take t𝐶𝑖u𝑑𝑖“1 as a partition of the domain Ω,

along with the family of sets 𝒯 “ pextp𝐶𝑖qq𝑑𝑖“1 with ground set 𝑉 “
Ť𝑑

𝑖“1 extp𝐶𝑖q, we

can model the piecewise linear function via the graph representation (1.10).

Example 2 (A bivariate piecewise linear function). Take the bivariate piecewise linear

function 𝑓 : r0, 1s2 Ñ R given by the domain partition 𝐶1 “ t 𝑥 P r0, 1s2 | 𝑥1 ě 𝑥2 u

and 𝐶2 “ t 𝑥 P r0, 1s2 | 𝑥1 ď 𝑥2 u, and

𝑥 P 𝐶1
ùñ 𝑓p𝑥q “ ´𝑥1 ` 3𝑥2 ` 1, 𝑥 P 𝐶2

ùñ 𝑓p𝑥q “ 𝑥1 ` 𝑥2 ` 1. (1.12)

See the left side of Figure 1-3 for an illustration. The corresponding graph is

grp𝑓q “
 

p𝑥,´𝑥1 ` 3𝑥2 ` 1q
ˇ

ˇ 𝑥 P 𝐶1
(

Y
 

p𝑥, 𝑥1 ` 𝑥2 ` 1q
ˇ

ˇ 𝑥 P 𝐶2
(

.

Furthermore, 𝑉 “ t0, 1u2, and with 𝒯 “ ptp0, 0q, p1, 0q, p1, 1qu, tp0, 0q, p0, 1q, p1, 1quq,

p𝑥, 𝑦q P grp𝑓q ðñ p𝑥, 𝑦q “
ÿ

𝑣P𝑉

p𝑣, 𝑓p𝑣qq𝜆𝑣 for some 𝜆 P CDCp𝒯 q.

An important special case we will focus on occurs when the function 𝑓 is affine over

a grid triangulation, as in Figure 1-1 and Example 2. Consider a rectangular region

in the plane Ω “ r1, 𝑁1s ˆ r1, 𝑁2s where along each axis we apply a discretization

with 𝑑1 “ 𝑁1 ´ 1 and 𝑑2 “ 𝑁2 ´ 1 breakpoints, respectively. This leads to a set of

regular grid points 𝑉 “ t1, . . . , 𝑁1uˆt1, . . . , 𝑁2u. A grid triangulation 𝒯 of Ω is then
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a family of sets 𝒯 where:

• Each 𝑇 P 𝒯 is a triangle: |𝑇 | “ 3.

• 𝒯 partitions Ω:
Ť

𝑇P𝒯 Convp𝑇 q “ Ω and intpConvp𝑇 qqX intpConvp𝑇 1qq “ H for

each distinct 𝑇, 𝑇 1 P 𝒯 (where intp𝑆q is the interior of set 𝑆).

• 𝒯 is on a regular grid: ||𝑣 ´ 𝑤||8 ď 1 for each 𝑇 P 𝒯 and 𝑣, 𝑤 P 𝑇 .

Grid triangulations can possess a very rich and irregular combinatorial structure;

see Figure 1-2, for three different triangulations with 𝑑1 “ 𝑑2 “ 2. Note that any

formulation constructed for a given grid triangulation can be readily applied to any

other grid triangulation obtained by shifting the grid points in the plane, so long as

the resulting triangulation is strongly isomorphic to, or compatible with, the original

triangulation [3]. In particular, our choice of ground set 𝑉 “ t1, . . . , 𝑁1uˆt1, . . . , 𝑁2u

is without loss of generality, and we can readily adapt our formulations for grids with

shifts or unequal interval lengths.

Figure 1-2: Three grid triangulations of Ω “ r1, 3s ˆ r1, 3s: (Left) the Union Jack
(J1) [127], (Center) the K1 [84], and (Right) a more idiosyncratic triangulation.

Finally, we note that the choice of triangulation is important, as it materially

affects the values that the corresponding piecewise linear function takes. This is in

sharp contrast to the univariate case, where the function is completely determined by

the breakpoints and the value the function takes at those points. In Figure 1-3 we

see a simple example of this, where two different triangulations lead to two bivariate

functions which coincide at the corner points 𝑉 , but differ substantially in the interior

of the domain.
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𝑓1p0, 0q “ 1

𝑓1p1, 0q “ 0

𝑓1p0, 1q “ 2

𝑓1p1, 1q “ 3

𝑓1p0.5, 0.5q “ 2

𝑓2p0, 0q “ 1

𝑓2p1, 0q “ 0

𝑓2p0, 1q “ 2

𝑓2p1, 1q “ 3

𝑓2p0.5, 0.5q “ 1

Figure 1-3: Two bivariate functions over 𝐷 “ r0, 1s2 that match on the gridpoints,
but differ on the interior of 𝐷.

Higher-dimensional piecewise linear functions Beyond univariate and bivari-

ate piecewise linear functions, it is also possible to define piecewise linear functions

over higher-dimensional grid triangulations. Given a 𝜂-dimensional piecewise linear

function 𝑓 : Ω Ñ R, where Ω Ă R𝜂 is a hyperrectangular domain. As was the

case with univariate and bivariate functions, assume that Ω “
ś𝜂

𝑖“1r1, 𝑁𝑖s and take

the regularly gridded ground set 𝑉 “
ś𝜂

𝑖“1J𝑁𝑖K, along with a 𝜂-dimensional grid

triangulation given by the family of sets 𝒯 , where

• Each 𝑇 P 𝒯 is a simplex: |𝑇 | “ 𝜂 ` 1.

• 𝒯 partitions Ω:
Ť

𝑇P𝒯 Convp𝑇 q “ Ω and intpConvp𝑇 qqX intpConvp𝑇 1qq “ H for

each distinct 𝑇, 𝑇 1 P 𝒯 .

• 𝒯 is on a regular grid: ||𝑣 ´ 𝑤||8 ď 1 for each 𝑇 P 𝒯 and 𝑣, 𝑤 P 𝑇 .

Note that this definition is a generalization of that given in the previous subsection

for grid triangulations in the plane (𝜂 “ 2). The combinatorial structure for higher-

dimensional grid triangulations is even more complex than in the two-dimensional

case: for example, different choices of triangulation for a single hypercube (e.g.

t0, 1u𝜂) can have different numbers of triangles [98, 127]. One possible choice is

the standard triangulation for t0, 1u𝜂, given by the family

𝑇 𝜋
“
 

𝑥 P t0, 1u𝜂
ˇ

ˇ 𝑥𝜋p1q ď 𝑥𝜋p2q ď ¨ ¨ ¨ ď 𝑥𝜋p𝜂q

(

(1.13)

for each permutation 𝜋 of J𝜂K.
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High-dimensional piecewise linear functions arise in a number of important opti-

mization contexts (see, for example, Chapter 1.3.8), but unless 𝜂 is very small they

quickly strain the practicality of the combinatorial disjunctive constraint approach.

This is because the cardinality of the ground set 𝑉 will grow exponentially in 𝜂, and

as the formulation (1.7) requires an auxiliary variable 𝜆𝑣 for each element 𝑣 P 𝑉 , this

overhead can quickly become overwhelming.

1.3.3 The SOS𝑘 constraint

In addition to the SOS1 and SOS2 constraints we have described above, we can

generalize the class of constraints to special-ordered sets of type 𝑘 (SOS𝑘), where at

most 𝑘 consecutive components of 𝜆 may be nonzero at once. In particular, if 𝑉 “

J𝑁K, we have 𝒯 SOS
𝑁,𝑘

def
“ pt𝜏, 𝜏 ` 1, . . . , 𝜏 ` 𝑘 ´ 1uq𝑁´𝑘`1𝑖“1 . This constraint may arise, for

example, in chemical process scheduling problems, where an activated machine may

only be on for 𝑘 consecutive time units and must produce a fixed quantity during that

period [52, 83]. We will refer to the SOS𝑘 constraint on 𝑁 components as SOS𝑘(𝑁).

1.3.4 Cardinality constraints

An extremely common constraint in optimization is the cardinality constraint of de-

gree ℓ, where at most ℓ components of 𝜆 may be nonzero. This corresponds to the

family of sets 𝒯 card
𝑁,ℓ

def
“ p𝑇 Ď 𝑉 | |𝑇 | “ ℓq, where we presume that 𝑉 “ J𝑁K for

simplicity. A particularly compelling application of the cardinality constraint is in

portfolio optimization [20, 22, 30, 132], where it is often advantageous to limit the

number of investments to some fixed number ℓ to minimize transaction costs, or to

allow differentiation from the performance of the market as a whole.

1.3.5 Discretizations of multilinear functions

Consider a multilinear function 𝑓p𝑥1, . . . , 𝑥𝜂q “
ś𝜂

𝑖“1 𝑥𝑖 defined over some hyperrect-

angular domain Ω “ r𝑙, 𝑢s Ă R𝜂. This function appears often in optimization models

[54], but is nonconvex, and often leads to problems which are difficult to solve to
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global optimality in practice [6, 115, 136]. As a result, computational techniques

will often “relax” the graph of the function grp𝑓q with a convex outer approximation,

which is easier to optimize over [119].

For the bilinear case (𝜂 “ 2), the well-known McCormick envelope [102] describes

the convex hull of grp𝑓q. Although traditionally stated in an inequality description,

we may equivalently describe the convex hull via its four extreme points, which are

readily available in closed form. For higher-dimensional multilinear functions, the

convex hull has 2𝜂 extreme points, and can be constructed in a similar manner (e.g.

see equation (3) in [95] and the associated references).

Misener et al. [104, 106] propose a computational technique for optimizing prob-

lems with bilinear terms where, instead of modeling the graph over a single region

Ω “ r𝑙, 𝑢s Ă R2, they discretize the region in a regular fashion and apply the Mc-

Cormick envelope to each subregion. They model this constraint as a union of poly-

hedra, where each subregion enjoys a tighter relaxation of the bilinear term. Addi-

tionally, they propose a logarithmically-sized formulation for the union. However, it

is not ideal (see Appendix A), it only applies for bilinear terms (𝜂 “ 2), and it is

specialized for a particular type of discretization (namely, only discretizing along one

component 𝑥1, and with constant discretization widths).

For a more general setting, we have that the extreme points of the convex hull

of the graph Convpgrp𝑓qq are given by t p𝑥, 𝑓p𝑥qq | 𝑥 P extpΩq u [95, equation (3)],

where it is easy to see that extpΩq “
ś𝜂

𝑖“1t𝑙𝑖, 𝑢𝑖u. Consider a grid imposed on

r𝑙, 𝑢s Ă R𝜂; that is, along each component 𝑖 P J𝜂K, we partition r𝑙𝑖, 𝑢𝑖s along the

points 𝑙𝑖 ” 𝜏 𝑖1 ă 𝜏 𝑖2 ă ¨ ¨ ¨ ă 𝜏 𝑖𝑑𝑖 ă 𝜏 𝑖𝑑𝑖`1 ” 𝑢𝑖. This yields
ś𝜂

𝑖“1 𝑑𝑖 subregions; denote

them by R
def
“
 

𝑅𝑘 “
ś𝜂

𝑖“1r𝜏
𝑖
𝑘𝑖
, 𝜏 𝑖𝑘𝑖`1s

ˇ

ˇ 𝑘 P
ś𝜂

𝑖“1J𝑑𝑖K
(

.

We can then take the polyhedral partition of Ω given by Φ𝑅 def
“ Convpgrp𝑓 ;𝑅qq for

each subregion 𝑅, the sets as 𝒯 “
`

extpΦ𝑅q
˘

𝑅PR
, and the ground set as 𝑉 “

Ť

t𝑇 P

𝒯 u. In particular, we have that 𝑉 “
ś𝜂

𝑖“1t𝜏
𝑖
1, . . . , 𝜏

𝑖
𝑁𝑖
u, where 𝑁𝑖 “ 𝑑𝑖 ` 1 for each 𝑖.

Analogously to the notational simplification we took with grid triangulations, for the

remainder we will take 𝑉 “
ś𝜂

𝑖“1J𝑁𝑖K and 𝒯 “ p
ś𝜂

𝑖“1t𝑘𝑖, 𝑘𝑖 ` 1u | 𝑘 P
ś𝜂

𝑖“1J𝑑𝑖Kq. We

also note that condition (1.9) is satisfied as long as the ordering of the discretization
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B

A

Figure 1-4: A trajectory for a UAV which avoids an obstacle in the center of the
domain.

is respected along each dimension.

1.3.6 Obstacle avoidance constraints

Consider an unmanned aerial vehicle (UAV) which you would like to navigate through

an area with fixed obstacles. At any given time, you wish to impose the constraint

that the location of the vehicle 𝑥 P R2 must lie in some (nonconvex) region Ω Ă R2,

which is some (bounded) subset the plane, with any obstacles in the area removed.

MIP formulations of this constraint has received interest as a useful primitive for path

planning problems [15, 47, 103, 114].

We may model 𝑥 P Ω by partitioning the region Ω with polyhedra such that Ω “
Ť𝑑

𝑖“1 𝑃
𝑖. Traditional approaches to modeling constraints (1.5) of this form use a linear

inequality description for each of the polyhedra 𝑃 𝑖 and construct a corresponding big-

𝑀 formulation [113, 114], which will not be strong, in general. However, it is clear

that we may also apply our combinatorial disjunctive constraint approach to construct

formulations for obstacle avoidance constraints.
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1.3.7 Annulus constraints

An annulus is a set in the plane 𝒜 “
 

𝑥 P R2
ˇ

ˇ 𝑆 ď ||𝑥||2 ď 𝑆
(

for constants 𝑆, 𝑆 P

Rě0; see the left side of Figure 1-5 for an illustration. A constraint of the form 𝑥 P 𝒜

might arise when modeling a complex number 𝑧 “ 𝑥1 ` 𝑥2i, as 𝑥 P 𝒜 bounds the

magnitude of 𝑧 as 𝑆 ď |𝑧| ď 𝑆. Such constraints arise in power systems optimization:

for example, in the “rectangular formulation” [81] and the second-order cone reformu-

lation [69, 91] of the optimal power flow problem and its voltage stability-constrained

variant [40], and the reactive power dispatch problem [53]. Another application is

footstep planning in robotics [46, 85], where we wish to model an angle 𝜃 trigonomet-

rically via 𝑥 “ pcosp𝜃q, sinp𝜃qq. This can be accomplished by imposing the identity

𝑥2
1 ` 𝑥2

2 “ 1, which corresponds to taking 𝑆 “ 𝑆 “ 1.

𝑥2

𝑥1𝑆

𝑆

𝑃 1

𝑃 2𝑃 3

𝑃 4

𝑃 5

𝑃 6 𝑃 7

𝑃 8

𝑣´1 ” 𝑣15 𝑣0 ” 𝑣16

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7𝑣8

𝑣9

𝑣10

𝑣11

𝑣12

𝑣13

𝑣14

Figure 1-5: (Left) The annulus 𝒜 and (Right) its corresponding quadrilateral re-
laxation 𝒜 given by (1.14) with 𝑑 “ 8.

When 0 ă 𝑆 ď 𝑆, 𝒜 is a nonconvex set. Moreover, the annulus is not mixed-integer

convex representable [93, 94]: that is, there do not exist mixed-integer formulations for

the annulus even if we allow the relaxation 𝑅 in formulation (1.3) to be an arbitrary

convex set.

Foster [53] proposes a disjunctive relaxation for the annulus given as 𝒜 def
“
Ť𝑑

𝑖“1 𝑃
𝑖,
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where each

𝑃 𝑖
“ Conv

´

 

𝑣2𝑖`𝑠´4
(4

𝑠“1

¯

@𝑖 P J𝑑K (1.14)

is a quadrilateral based on the breakpoints

𝑣2𝑖´1 “

ˆ

𝑆 cos

ˆ

2𝜋𝑖

𝑑

˙

, 𝑆 sin

ˆ

2𝜋𝑖

𝑑

˙˙

@𝑖 P J𝑑K

𝑣2𝑖 “

ˆ

𝑆 sec
´𝜋

𝑑

¯

cos

ˆ

2𝜋𝑖

𝑑

˙

, 𝑆 sec
´𝜋

𝑑

¯

sin

ˆ

2𝜋𝑖

𝑑

˙˙

@𝑖 P J𝑑K,

where, for notational simplicity, we take 𝑣0 ” 𝑣2𝑑 and 𝑣´1 ” 𝑣2𝑑´1. We can in turn

represent this disjunctive relaxation through the combinatorial disjunctive constraint

given by the family 𝒯 ann
𝑑

def
“ pt2𝑖 ` 𝑠 ´ 4u4𝑠“1q

𝑑
𝑖“1. See the right side of Figure 1-5 for

an illustration.

1.3.8 Optimizing over trained neural networks

Since the turn of the millenia, deep learning has received an explosion of interest due

to its successful application to a number of difficult problems in areas such as speech

recognition and image classification [59, 87]. More recently, it has been recognized

that trained feedforward neural networks with standard activation units are noth-

ing more than high-dimensional (nonconvex) piecewise linear functions, and can be

modeled using MIP. Indeed, a string of recent research has applied this observation

to tasks such as verification, planning, and control [5, 31, 50, 121, 126, 138]. In this

thesis, we will focus on neural networks that are built by composing a number of

“rectified linear” (ReLu) activation units of the form

𝑓 ReLu
p𝑥q

def
“ maxt0, 𝑥u

with affine mappings 𝑤 ¨ 𝑥 ` 𝑏 which are learned during the training procedure. In

particular, we will formulate the set resulting from composing an affine mapping with
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a single ReLu unit:

ReLu
def
“
 

p𝑥, 𝑓 ReLu
p𝑤 ¨ 𝑥` 𝑏qq

ˇ

ˇ 𝐿 ď 𝑥 ď 𝑈
(

.

As we observed in Chapter 1.3.2, the combinatorial disjunctive constraint approach

does not lend itself well to high dimensional piecewise linear functions of this form,

as the ground set 𝑉 can grow exponentially in 𝜂. Therefore, in Chapter 4.4 we will

strive to produce strong formulations through a different approach, though we will

have to sacrifice formulation size as a result.

As an extension, we will also consider sets representing the composition of two

layers with multiple nonlinear activation units applied to the same inputs, but with

different affine mappings:

$

’

’

’

&

’

’

’

%

p𝑥, 𝑦1, . . . , 𝑦𝑑, 𝑦q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

𝐿 ď 𝑥 ď 𝑈

𝑦𝑖 “ 𝑓 ReLup𝑤𝑖 ¨ 𝑥` 𝑏𝑖q @𝑖 P J𝑑K

𝑦 “ 𝑓 ReLup𝑤̃ ¨ p𝑦1, . . . , 𝑦𝑑q ` 𝑏̃q

,

/

/

/

.

/

/

/

-

.

1.4 Assessing the quality of MIP formulations

Throughout this thesis, we will be interested in ways of understanding, both quantita-

tively and qualitatively, when we can expect a given MIP formulation to perform well

in practice. We will focus on three measures of formulation quality, which empirically

tend to correlate very strongly with computational performance [34, 130, 139].

1.4.1 Strength

First, we desire formulations whose LP relaxations are as tight as possible. The

reason for this is simple: using a branch-and-bound-based approach, we rely on this

LP relaxation to produce good dual bounds on the optimal objective value, which we

in turn use to prune as much of the search tree as possible. Therefore, we would like

to produce a relaxation that is as tight as possible (without losing validity), since this

will produce dual bounds that are as strong as possible.
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There are two standard notions of formulation strength, that consider either the

original variables 𝑥, or the integer variables 𝑧.

Definition 2. Take a formulation 𝐹 “ t p𝑥,𝑤, 𝑧q P 𝑅 | 𝑧 P Z𝑟 u for 𝐷 Ă R𝑛, given

by the LP relaxation 𝑅. We say the formulation is:

• sharp if Proj𝑥p𝑅q “ Convp𝐷q.

• ideal if Proj𝑧pextp𝑅qq Ď Z𝑟.

Sharp formulations are desirable as they offer the tightest possible convex relax-

ation in the 𝑥-space, and so in turn give the strongest possible dual bounds; see

Figure 1-6 for an illustration. Ideal formulations are desirable since, if you solve the

optimization problem over the corresponding relaxation, you are guaranteed the ex-

istence of an optimal solution that is integer feasible w.r.t. (1.4d), and optimal for

the original MIP problem.

𝑥

𝑦

𝑥

𝑦

Figure 1-6: The relaxations (gray region) for two different formulations of a nonconvex
set (solid lines), corresponding a univariate piecewise linear function. (Left) One is
not sharp, while (Right) the second is sharp. If we solve the relaxted optimization
problem minp𝑥,𝑦qP𝑅 𝑦 for each relaxation 𝑅, we get different optimal solution values
(optimal solutions circled), and therefore different dual bounds for the MIP problem.

It is the case that an ideal formulation is also sharp, while the converse is not

true [130]. Indeed, ideal formulations are the strongest possible from the perspective

of their LP relaxation, hence the name. As a result, in this thesis we will focus

(nearly) exclusively on ways to build ideal formulations; when we refer to “strong

formulations” for the remainder, take this to mean “ideal formulations.”
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1.4.2 Size

Our second metric is formulation size: that is, how many variables and constraints

are needed to describe the problem. We will strive to produce formulations that are

as small as possible, as size (as defined below) tends to correlate very strongly with

the difficulty of a MIP instance.

A first measure of formulation size is 𝑟, the number of integer variables used. This

factor is of particular importance, since in the worst case the complexity of solving a

MIP instance will scale exponentially in 𝑟.

Beyond this, we will count 𝑝, the number of auxiliary continuous variables, as well

as the number of inequalities needed to describe the relaxation 𝑅. For our purposes

we will ignore the number of original variables, as we consider them to be intrinsic

to the problem. When using a branch-and-bound-based method, you will typically

need to solve many optimization problems over the LP relaxation 𝑅 (possibly slightly

altered with new constraints or different variable bounds). Therefore, the speed at

which you can solve these LPs is of tantamount importance, and so we will endeavor

to produce LP relaxations that are as small as possible.

We will say that a formulation is extended if there are auxiliary continuous vari-

ables 𝑤 in the formulation (that is, 𝑝 ą 0) and non-extended otherwise (𝑝 “ 0). Fur-

thermore, as suggested by the definition of 𝑅 in (1.2), we distinguish between variable

bounds (e.g. 𝑙𝑥 ď 𝑥 ď 𝑢𝑥) and general inequality constraints (𝐴𝑥 ` 𝐵𝑤 ` 𝐶𝑧 ď 𝑑),

as modern MIP solvers are able to incorporate variable bounds with minimal extra

computational cost.

1.4.3 Branching behavior

Our third metric is the branching behavior of a formulation: namely, how does the LP

relaxation change in a branch-and-bound algorithm? In this setting, the algorithm

solved the relaxed optimization problem, producing a solution p𝑥˚, 𝑤˚, 𝑧˚q P 𝑅. It

then selects a fractional integer variable 𝑧˚𝑖 (assuming one exists) and branches on it,

creating two subproblems: one with the altered variable bound 𝑧𝑖 ď t𝑧˚𝑖 u, the other
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with 𝑧𝑖 ě r𝑧˚𝑖 s. In other words, the LP relaxations for each subproblem are now

t p𝑥,𝑤, 𝑧q P 𝑅 : 𝑧𝑖 ď t𝑧˚𝑖 u u and t p𝑥,𝑤, 𝑧q P 𝑅 : 𝑧𝑖 ě r𝑧˚𝑖 s u, respectively. Ideally, both

subproblem LP relaxations are substantially smaller (in a geometric sense) than 𝑅,

as this will likely improve the dual bounds, and hopefully lead to substantial pruning

of the search tree. However, we will see in Chapters 3 and 4 that this is often not

the case: formulations can easily induce poor branching where either one or both

of the subproblems do not substantially alter the LP relaxation, which can in turn

lead to undesirable levels of enumeration in the search tree. See Figure 1-7 for an

illustration of good and bad branching behavior: one formulation induces branching

where both subproblems contract the LP relaxation substantially, while the other has

very unbalanced branching, with one subproblem LP relaxation remaining completely

unchanged.

𝑥

𝑦

𝑧1 ď 0

𝑥

𝑦

𝑧1 ě 1

𝑥

𝑦

𝑧1 ď 0

𝑥

𝑦

𝑧1 ě 1

Figure 1-7: (Top) Good branching for one formulation of a univariate piecewise linear
function, and (Bottom) bad, unbalanced branching from another formulation.
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We attempt to formalize the quality of a formulations branching behavior through

two complementary notions.

Definition 3. Take a formulation 𝐹 “ t p𝑥,𝑤, 𝑧q P 𝑅 | 𝑧 P Z𝑟 u for 𝐷 given by the

LP relaxation 𝑅. Given 𝑘 P J𝑟K and 𝑑 P Z, take

𝑅Ó “ t p𝑥,𝑤, 𝑧q P 𝑅 | 𝑧𝑘 ď 𝑑 u

𝑅Ò “ t p𝑥,𝑤, 𝑧q P 𝑅 | 𝑧𝑘 ě 𝑑` 1 u

as the relaxations after down-branching on 𝑧𝑘 ď 𝑑 and up-branching on 𝑧𝑘 ě 𝑑 ` 1,

respectively. Furthermore, take

𝐷Ó “ t 𝑥 P 𝐷 | D𝑤, 𝑧 s.t. p𝑥,𝑤, 𝑧q P 𝐹, 𝑧𝑘 ď 𝑑 u

𝐷Ò “ t 𝑥 P 𝐷 | D𝑤, 𝑧 s.t. p𝑥,𝑤, 𝑧q P 𝐹, 𝑧𝑘 ě 𝑑` 1 u

as the portion of 𝐷 feasible after down-branching and up-branching, respectively.

• The formulation is hereditarily sharp [72, 73] if, for each 𝑘 P J𝑟K and each 𝑑 P Z,

t p𝑥,𝑤, 𝑧q P 𝑅Ó | 𝑧 P Z𝑟 u and t p𝑥,𝑤, 𝑧q P 𝑅Ò | 𝑧 P Z𝑟 u are sharp formulations

for 𝐷Ó and 𝐷Ò, respectively.

• The formulation has incremental branching if, for each 𝑘 P J𝑟K and each 𝑑 P Z,

intpConvp𝐷Óqq X intpConvp𝐷Òqq “ H.

In words, a formulation is hereditarily sharp if it retains its sharpness after branch-

ing. Additionally, a formulation has incremental branching if branching results in

subproblems that have disjoint feasible regions; this aligns with folklore wisdom in

the MIP literature [23]. Indeed, we can see this borne out in Figure 1-7: both for-

mulations are hereditarily sharp, but the first also has incremental branching, which

leads to much more balanced subproblems.

These three measures of quality–strength, size, and branching behavior–are often

in conflict. For example, the tools we develop in Chapter 3 show that we can always
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produce strong formulations with few integer variables. However, if we are not care-

ful, these formulations can easily require exponentially many inequality constraints

(cf. [130]). On the other hand, there exist structures for which you can construct

formulations that are very small, with only a constant number of general inequality

constraints, although in order to do this you must sacrifice formulation strength (this

result appears in a preprint version of [129]). Furthermore, as we see in Chapter 4,

the logarithmic formulations for univariate piecewise linear functions of Vielma and

Nemhauser [135] are small and strong, but exhibit degenerate branching behavior. In

this thesis we will endeavor to build formulations that balance all three metrics at

once.

1.5 Existing approaches

We are now prepared to present a number of MIP formulation techniques from the

literature that can be applied to any combinatorial disjunctive constraint. These

standard formulations will provide a benchmark for comparing against our new for-

mulations we will develop in this thesis.

A standard formulation for CDCp𝒯 q adapted from Jeroslow and Lowe [72] is

𝜆𝑣 “
ÿ

𝑇P𝒯 :𝑣P𝑇

𝛾𝑇
𝑣 @𝑣 P 𝑉 (1.15a)

𝑧𝑇 “
ÿ

𝑣P𝑇

𝛾𝑇
𝑣 @𝑇 P 𝒯 (1.15b)

ÿ

𝑇P𝒯
𝑧𝑇 “ 1 (1.15c)

𝛾𝑇
P ∆𝑇

@𝑇 P 𝒯 (1.15d)

p𝜆, 𝑧q P ∆𝑉
ˆ t0, 1u𝒯 . (1.15e)

We will call this the “multiple choice” (MC) formulation. This formulation has |𝒯 |

binary variables,
ř

𝑇P𝒯 |𝑇 | auxiliary continuous variables, and no general inequality

constraints. Additionally, it is ideal.

Using Proposition 9.3 from [130], we can construct an ideal MIP formulation with
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fewer binary variables:

𝜆𝑣 “
ÿ

𝑇P𝒯 :𝑣P𝑇

𝛾𝑇
𝑣 @𝑣 P 𝑉 (1.16a)

ÿ

𝑇P𝒯

ÿ

𝑣P𝑇

𝛾𝑇
𝑣 “ 1 (1.16b)

ÿ

𝑇P𝒯

ÿ

𝑣P𝑇

ℎ𝑇𝛾𝑇
𝑣 “ 𝑧 (1.16c)

𝛾𝑇
ě 0 @𝑇 P 𝒯 (1.16d)

𝑧 P t0, 1u𝑟, (1.16e)

where tℎ𝑇 u𝑇P𝒯 Ď t0, 1u
𝑟 is some set of distinct binary vectors. This formulation is

actually a generalization of (1.15), which we recover if we take ℎ𝑇 “ e𝑇 P R𝒯 as

the canonical unit vectors. If instead we take 𝑟 to be as small as possible (while

ensuring that the vectors tℎ𝑇 u𝑇P𝒯 are distinct), we recover 𝑟 “ rlog2p𝑑qs. This is a

disaggregated logarithmic (DLog) formulation, and is an ideal extended formulation

for (1.5) with rlog2p𝑑qs binary variables,
ř

𝑇P𝒯 |𝑇 | auxiliary continuous variables, and

no general inequality constraints. The following result shows that, in the standard

binary MIP setting, this is the smallest number of integer variables we may hope for.

Proposition 1. If the sets 𝒯 are irredundant, then any binary MIP formulation for

CDCp𝒯 q must have at least rlog2p𝑑qs binary variables.

Proof. Follows as a special case of Proposition 12.

The formulations (1.15) and (1.16) are both extended formulations that work by

formulating each alternative separately and then aggregating them, rather than work-

ing directly with the combinatorial structure underlying the shared extreme points.

Therefore, each of these formulations requires a copy of the multiplier 𝛾𝑇
𝑣 for each set

𝑇 P 𝒯 for which 𝑣 P 𝑇 , and so
ř𝑑

𝑖“1 |𝒯 | auxiliary continuous variables total.

In contrast, we can construct non-extended formulations for CDCp𝒯 q that work

directly on the 𝜆 variables and the underlying combinatorial structure of 𝒯 . An

example of a non-extended formulation for CDC is the widely used ad-hoc formulation
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(see [130, Section 6] and the references therein) given by

𝜆𝑣 ď
ÿ

𝑇P𝒯 :𝑣P𝑇

𝑧𝑇 @𝑣 P 𝑉 (1.17a)

ÿ

𝑇P𝒯
𝑧𝑇 “ 1 (1.17b)

p𝜆, 𝑧q P ∆𝑉
ˆ t0, 1u𝒯 . (1.17c)

We will call this formulation the “convex combination” (CC) formulation. This for-

mulation is not necessarily ideal, and it requires no auxiliary continuous variables, 𝑑

binary variables, and |𝑉 | general inequality constraints.

In summary, we have seen an ideal extended formulation (1.16) for CDCp𝒯 q with

relatively few binary variables, but relatively many auxiliary continuous variables.

On the other end of the spectrum, we have a non-extended formulation (1.17) with

no auxiliary continuous variables, but which requires relatively many binary variables

and which may fail to be ideal. However, there exist special cases we can construct

ideal, non-extended formulations with only Oplogp𝑑qq binary variables and constraints

(e.g. SOS1, SOS2, and particular 2-dimensional grid triangulations [135, 133]). More-

over, these “logarithmic” formulations have proven computational efficacy for a wide

swath of problem instances [131, 135]. For the remainder of this thesis, we will present

systematic ways to build small, strong MIP formulations in this vein for a wide range

of disjunctive constraints, including those introduced in Chapter 1.3.

1.6 Contributions of this thesis

The contributions of this thesis are as follows.

Chapter 2 We study in detail the independent branching framework of Vielma

and Nemhauser [133], a combinatorial way to build MIP formulations for disjunctive

constraints. We provide an exact characterization of the expressive power of this

framework by providing a graphical answer to the question: Does any independent

branching formulation exist for a given constraint? We answer in the affirmative
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for many constraints of interest (piecewise linear functions, SOS𝑘 constraints, dis-

cretizations of multilinear functions, obstacle avoidance), but negatively for others

(cardinality constraints). Provided that any independent branching formulation ex-

ists, we show that each independent branching formulation corresponds to a biclique

cover for a particular graph. In other words, the question of formulating a disjunctive

constraint reduces to a purely combinatorial problem. Using this insight, we are able

to systematically construct small independent branching formulations for many of our

motivating problems, and provide bounds on how far these heuristic constructions are

from the smallest possible.

Chapter 3 We study a geometric way to construct MIP formulations through what

is known as the embedding approach. We provide a way to construct ideal formula-

tions for any combinatorial disjunctive constraint that is purely geometric, its com-

plexity hinging solely on the computation of spanning hyperplanes for a set of points.

The embedding approach very naturally allows us to consider MIP formulations that

use general integer (as opposed to binary) integer variables, and we provide exam-

ples where this extra freedom allows us to create much smaller formulations than

would be possible otherwise. However, we show that this extra freedom does not

afford any improvement in formulation size for combinatorial disjunctive constraints.

Nevertheless, we are able to produce new MIP formulations for univariate piecewise

linear functions and the annulus that are strong (ideal), and small (logarithmic in 𝑑).

Moreover, we are able to design them to use general integer variables in such a way

that induces desirable branching behavior.

Chapter 4 We perform an in-depth computational study of MIP formulations for

piecewise linear functions. We show that the new formulations derived in Chap-

ters 2 and 3 afford a substantial computational improvement over myriad existing

approaches:

• For univariate functions: A 1.5-3x speed-up on harder instances.

• For bivariate functions: Over an order-of-magnitude speed-up.
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We also showcase computational modeling tools developed in tandem, which offer a

high-level interface for writing and solving optimization models containing piecewise

linear functions. We close the chapter by turning to high-dimensional piecewise linear

functions arising in the context of deep learning, and develop a new ideal formulation

and valid inequalities for these structures.

Chapter 5 We close this thesis with a more speculative question: Given an arbi-

trary disjunctive constraint, what do we have to sacrifice in order to construct MIP

formulations with very few integer variables? We show that, if we allow ourselves to

leave spurious “integer holes” in the interior of our MIP formulations, we can pro-

duce ideal formulations for any disjunctive constraint with only two integer variables

and a linear number of linear inequality constraints. Additionally, we can reduce the

number of constraints to a small constant number (ď 6) for specific structures like

univariate piecewise linear functions and the annulus. We provide a framework to

encompass these MIP-with-holes formulations, and show how they fit together with

standard MIP algorithmic approaches (e.g. branch-and-bound and cutting planes).

1.7 Notation

In Table 1.1 we provide a summary of some of the notation we will return to through-

out the course of this thesis.
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Table 1.1: Notation used throughout the paper.
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Chapter 2

A combinatorial way to construct

formulations.

One relatively generic and versatile way to build small, strong formulations is the

independent branching (IB) scheme framework introduced by Vielma and Nemhauser

[135]. The approach is to find some (particularly structured) polyhedra 𝑄1,𝑗 and 𝑄2,𝑗

such that the disjunctive set in (1.5) can be rewritten as

𝐷 ”

𝑑
ď

𝑖“1

𝑃 𝑖
“

𝑡
č

𝑗“1

`

𝑄1,𝑗
Y𝑄2,𝑗

˘

. (2.1)

This represents the disjunctive constraint in term of a series of simple choices between

two alternatives. Given such a representation, it is often straightforward to construct

a simple, small, and ideal formulation for (1.5) by formulating each of the 𝑡 alternatives

separately, and then combining them. In particular, when the polyhedra 𝑃 𝑖 are V-

polyhedra, the construction of the independent branching scheme-based formulation is

purely combinatorial. We can therefore approach formulating (1.5) combinatorially,

by studying the shared structure amongst the extreme points. In this chapter we

generalize and provide a systematic study of the applicability and limitations of the

independent branching approach for combinatorial disjunctive constraints.
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2.1 Independent branching schemes

The independent branching approach is a logically equivalent way of expressing a

CDC in terms of a conjunction of dichotomies: that is, as a series of choices between

two simple options. This approach is parsimonious: if you are given an independent

branching scheme for a particular CDC, it is straightforward to construct an ideal

formulation whose size is on the order of the number of dichotomies. For our pur-

poses, we present a generalized notion, where we allow potentially more than two

alternatives.

Definition 4. A 𝑘-way independent branching scheme for CDCp𝒯 q is given by a

family of sets p𝐿𝑗
1, . . . , 𝐿

𝑗
𝑘q (where each 𝐿𝑗

𝑖 Ď 𝑉 ) for 𝑗 P J𝑡K, where

CDCp𝒯 q “
𝑡
č

𝑗“1

˜

𝑘
ď

𝑖“1

𝑃 p𝐿𝑗
𝑖 q

¸

. (2.2)

We say that such an IB scheme has depth 𝑡, and that each 𝑗 P J𝑡K yields a corre-

sponding level of the IB scheme,
Ť𝑘

𝑖“1 𝑃 p𝐿
𝑗
𝑖 q, given by the 𝑘 alternatives t𝑃 p𝐿𝑗

𝑖 qu
𝑘
𝑖“1.

In this form, we have replaced the monolithic disjunctive constraint CDCp𝒯 q with

𝑡 disjunctive constraints, each of which require the selection between 𝑘 alternatives.

The hope here is that 𝑡, 𝑘 ! 𝑑, as we can then use standard techniques to construct a

corresponding small MIP formulation for the independent branching scheme directly.

Proposition 2. Given 𝒯 “ p𝑇 𝑖 Ď 𝑉 q𝑑𝑖“1 and an independent branching scheme

tp𝐿𝑗
1, . . . , 𝐿

𝑗
𝑘qu

𝑡
𝑗“1 for CDCp𝒯 q, the following is a valid MIP formulation for CDCp𝒯 q:

ÿ

𝑣R𝐿𝑗
𝑖

𝜆𝑣 ď 1´ 𝑧𝑗𝑖 @𝑗 P J𝑡K, @𝑖 P J𝑘K (2.3a)

𝑘
ÿ

𝑖“1

𝑧𝑗𝑖 “ 1 @𝑗 P J𝑡K (2.3b)

𝜆 P ∆𝑉 (2.3c)

𝑧𝑗 P t0, 1u𝑘 @𝑗 P J𝑡K. (2.3d)
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The formulation is known to be ideal for 𝑘 “ 2 [133, 135]. It has no auxiliary con-

tinuous variables, 𝑘𝑡 auxiliary binary variables, and 𝑘𝑡 general inequality constraints.

An equivalent way of understanding independent branching representations, which

we will be using for the remainder of this work, is by eschewing the polyhedra 𝑃 p𝐿𝑗
𝑖 q

and working directly on the underlying set 𝐿𝑗
𝑖 . That is, a valid 𝑘-way IB scheme

satisfies the condition that

𝑇 Ď 𝑉 is a feasible set ðñ @𝑗 P J𝑡K, D𝑖 P J𝑘K s.t. 𝑇 Ď 𝐿𝑗
𝑖 .

First, we observe that, due to our assumption that 𝒯 covers the ground set, we have

that for each element 𝑣 P 𝑉 and level 𝑗 P J𝑡K, there will be at least one alternative

𝑖 P J𝑘K such that 𝑣 P 𝐿𝑗
𝑖 . We will use this extensively in the analysis to come, as it

simplifies some otherwise tedious case analyses. Second, we see that this definition

can capture potential schemes with a variable number of alternatives in each level by

adding empty alternatives 𝐿𝑗
𝑖 “ H, provided we take 𝑘 as the maximum number of

alternatives for all levels. For notational simplicity, we say that a 2-way IB scheme is

a pairwise IB scheme, and in this case we write the sets as tp𝐿𝑗, 𝑅𝑗qu𝑡𝑗“1 as in [135].

In contrast, we will call the case with 𝑘 ą 2 a multi-way IB scheme.

2.2 What does independent branching mean?

2.2.1 Constraint branching via independent branching schemes

The standard algorithm used to solve mixed-integer programming problems is some

variation of branch-and-bound [86], which implicitly enumerates all possible values

for the integer variables. In its simplest form applied to a binary MIP formulation, a

sequence of problems are solved: the optimization problem over the relaxation of the

MIP formulation is solved, after which a binary variable 𝑧𝑖 is chosen for branching.

That is, the current problem is split into two subproblems: one with the additional

constraint 𝑧𝑖 ď 0, another with 𝑧𝑖 ě 1. Repeating this procedure, the subproblems

form a (binary) tree whose leaves correspond to all 2𝑟 possible values for 𝑟 binary
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variables. At any given subproblem, the augmented relaxation to be optimized over

is described by the set of binary variables fixed to zero, and the set of those fixed to

one.

The spirit of constraint branching is to allow richer branching decisions. For ex-

ample, a branching decision might be between 𝑘 alternatives of the form t𝑄𝑖u𝑘𝑖“1,

where each 𝑄𝑖 is formed by adding a general inequality constraint to the existing

relaxation at the current node. This concept has significant overlap with the broader

field of constraint programming [8, 70], which has been recognized and exploited in

the mixed-integer programming literature [1, 7, 65, 110, 118]. More complex con-

straint branching can often lead to a more balanced branch-and-bound tree, which

in turn can significantly improve computational performance (see, for example, [130,

Section 8] and [139] for more discussion). Combinatorial disjunctive constraints are

a natural setting to apply constraint branching directly on the continuous 𝜆 vari-

ables [13, 43, 75, 76, 100]. Indeed, the classical examples of the SOS1 and SOS2

constraints [13] show that we do not necessarily require a MIP formulation (or the

auxiliary binary variables 𝑧) for modeling combinatorial disjunctive constraints, as

the disjunction can be enforced directly through constraint branching on the 𝜆 vari-

ables. These constraint branching approaches without auxiliary binary variables can

be implemented in an ad-hoc branch-and-bound procedure, or through branching

callbacks available in some MIP solvers, such as CPLEX. In theory, this approach

should outperform a MIP formulation like (1.17) that introduces additional variables

and constraints. However, realizing this performance advantage in practice can re-

quire significant effort and technical expertise. For instance, Vielma et al. [133, 134]

observe that the basic formulation (1.17) clearly outperformed the SOS2 branching

implementation in CPLEX v9.1. However, CPLEX v11 implemented an optimized

version of SOS2 branching that used the advanced branch selection techniques avail-

able for variable branching, reversing this performance gap with respect the MIP

formulation approach.

One way to avoid re-implementing the advanced branching selection techniques

for a new constraint branching approach is by constructing a MIP formulation that
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automatically inherits the advanced constraint branch selection, but using the solvers

traditional variable branching [7, 135]. Consider a constraint branching approach that

has 𝑡 branching options, each of which creates 𝑘 branches, and that each constraint

added has support on the 𝜆 variables, with variable coefficients in t0, 1u and a zero

right-hand-side. That is, branch 𝑖 P J𝑘K of branching option 𝑗 P J𝑡K adds a constraint

of the form
ř

𝑣R𝐿𝑗
𝑖
𝜆𝑣 ď 0. This is equivalent to a multi-variable branching approach

that fixes groups of variables to zero, and it includes as special cases most constraint

branching approaches, including SOS1 and SOS2 branching. Then (2.3) is a MIP

formulation for this multi-variable constraint branching scheme, as variable branching

on 𝑧𝑗𝑖 enforces constraint branching option 𝑗 of branch 𝑖 on the 𝜆 variables.

This connection highlights the natural theoretical equivalence between a multi-

variable branching and an independent branching formulation. A practical difference

between the two is that direct multi-variable branching must implement an explicit

branch selection and implementation routine, while an independent branching formu-

lation inherits the variable branching selection and implementation routines of the

MIP solver. The upshot of this is that the independent branching formulation must

provide a complete catalog of all possible branching options up-front (i.e. through

the formulation), while direct multi-variable branching can have a large catalog of

branching options that are implicitly defined by the branching routines.

2.2.2 Independence in formulation-induced branching schemes

As discussed in [135, Section 3], the connection between MIP formulations and branch-

ing schemes for CDCs can be used to explain in what sense an independent branch-

ing scheme is “independent.” In the previous subsection, we saw that the branching

scheme on 𝜆 induced by formulation (2.3) is precisely the multi-variable branching

associated to the corresponding independent branching scheme. In contrast, formu-

lations that are not based on IB schemes (e.g. (1.16)) do not necessarily induce a

multi-variable branching. However, we can sometimes interpret the induced effect

on the 𝜆 variables as a multi-way branching scheme that fixes the 𝜆 variables in a

non-independent way.
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For example, consider the SOS2(5) constraint, given by the family of sets 𝒯 SOS2
5 “

pt1, 2u, t2, 3u, t3, 4u, t4, 5uq. For this particular instance and for pℎ𝑇 q𝑇P𝒯 given by

ℎt1,2u “ p1, 1q, ℎt2,3u “ p1, 0q, ℎt3,4u “ p0, 1q, and ℎt4,5u “ p0, 0q, formulation (1.16) is

𝜆1 “ 𝛾
t1,2u
1 , 𝜆2 “ 𝛾

t1,2u
2 ` 𝛾

t2,3u
2 , 𝜆3 “ 𝛾

t2,3u
3 ` 𝛾

t3,4u
3 , (2.4a)

𝜆4 “ 𝛾
t3,4u
4 ` 𝛾

t4,5u
4 , 𝜆5 “ 𝛾

t4,5u
5 (2.4b)

𝛾
t1,2u
1 ` 𝛾

t1,2u
2 ` 𝛾

t2,3u
2 ` 𝛾

t2,3u
3 ` 𝛾

t3,4u
3 ` 𝛾

t3,4u
4 ` 𝛾

t4,5u
4 ` 𝛾

t4,5u
5 “ 1 (2.4c)

𝛾
t1,2u
1 ` 𝛾

t1,2u
2 ` 𝛾

t2,3u
2 ` 𝛾

t2,3u
3 “ 𝑧1 (2.4d)

𝛾
t1,2u
1 ` 𝛾

t1,2u
2 ` 𝛾

t3,4u
3 ` 𝛾

t3,4u
4 “ 𝑧2 (2.4e)

𝛾𝑆
𝑣 ě 0 @𝑣, 𝑇 (2.4f)

p𝜆, 𝑧q P ∆5
ˆ t0, 1u2 (2.4g)

and a pairwise IB formulation (simplified slightly from (2.3)) is

𝜆1 ` 𝜆2 ď 𝑧1, 𝜆4 ` 𝜆5ď 1´ 𝑧1 (2.5a)

𝜆3 ď 𝑧2, 𝜆1 ` 𝜆5ď 1´ 𝑧2 (2.5b)

p𝜆, 𝑧q P ∆5
ˆ t0, 1u2. (2.5c)

In Figure 2-1, we see the first two levels of the branch-and-bound trees for both

formulations for the cases where we choose either 𝑧1 or 𝑧2 for which to branch on

first. We observe that, for formulation (2.4), the variables 𝜆𝑣 that a given branching

decision is able to prove are zero depends on the previous branching decisions in

the branch-and-bound tree, while this is not the case for the independent branching

formulation (2.5). For example, with (2.4) if we first branch down on 𝑧2 (i.e. 𝑧2 ď 0),

we are able to prove that 𝜆1 “ 0. If we choose instead to first branch down on 𝑧1 (i.e.

𝑧1 ď 0), we are able to prove that 𝜆1 “ 𝜆2 “ 0. However, if we branch down on 𝑧2

and then branch down on 𝑧1, we prove that 𝜆1 “ 𝜆2 “ 0, but we are also able to prove

that 𝜆3 “ 0, which we could not prove without the combination of the two branching

decisions. Indeed, we see that regardless of the branching decision we make, we will
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not be able to prove that 𝜆3 “ 0 until the second level of the branching tree with

formulation (2.4).

⌀

{1,2}

z1=0
{1,2}

z2=0
{1}

z2=1
{5}

z2=0
{1}

z2=1
{5}

z1=1
{4,5}

{1,2,3} {1,2,5} {1,4,5} {3,4,5}

{4,5}

⌀

{1,2}

z1=0
{1,2}

z2=0
{3}

z2=1
{1,5}

z2=0
{3}

z2=1
{1,5}

z1=1
{4,5}

{1,2,3} {1,2,5} {1,4,5} {3,4,5}

{4,5}

⌀

{1}

z2=0
{1}

z1=0
{1,2}

z1=1
{4,5}

z1=0
{1,2}

z1=1
{4,5}

z2=1
{5}

{1,2,3} {1,4,5} {1,2,5} {3,4,5}

{5}

⌀

{3}

z2=0
{3}

z1=0
{1,2}

z1=1
{4,5}

z1=0
{1,2}

z1=1
{4,5}

z2=1
{1,5}

{1,2,3} {3,4,5} {1,2,5} {1,4,5}

{1,5}

Figure 2-1: The branch-and-bound trees for (Left) (2.4) and (Right) (2.5), when
(Top row) 𝑧1 is first to branch on, and then 𝑧2, and when (Bottom row) 𝑧2 is first
to branch on, and then 𝑧1. Inside each node is the set 𝐼 Ă J5K of all components 𝑣 for
which the algorithm has been able prove that 𝜆𝑣 “ 0 at this point in the algorithm
via branching decisions. The text on the lines show the current branching decision
(e.g. 𝑧2 ě 1), and the set of components 𝑣 P J5K for which the (a) subproblem is
able to prove that 𝜆𝑣 “ 0 independently of any other branching decisions (e.g. 𝑧2 ě 1
is the only additional branching constraint added to the original relaxation). This
figure is adapted from [135, Figure 2].

In contrast, each branching decision with the independent branching formulation

(2.5) is able to fix components of 𝜆 to zero, independent of the location in the tree

and of the previous branching decisions. For example, branching down or up on 𝑧2 is

always able to prove either 𝜆3 “ 0 or 𝜆1 “ 𝜆5 “ 0, independently. Consequentially,

for every component 𝑣 P 𝑉 , there exists a branching decision that is able to prove

that 𝜆𝑣 “ 0 at the first level of the branch-and-bound tree, which is not the case with

formulation (2.4) and 𝑣 “ 3, as mentioned above. Having this independence property

is a restriction on the branching scheme, but has the potential to simplify branching
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rules (i.e. choosing which variable 𝑧𝑖 to branch on), a notoriously difficult and com-

putationally important part of the algorithmic performance of a MIP solver (see, for

example, [2]). Furthermore, we see that independent branching rules guarantee that

the solver can prove any component of 𝜆 is zero at the very beginning of the tree.

Finally, we note that MIP formulations that are not independent branching formu-

lations can still exhibit the independent branching behavior. For example, if we had

selected the encoding pℎ𝑇 q𝑇P𝒯 to be given by given by ℎt1,2u “ p1, 1q, ℎt2,3u “ p1, 0q,

ℎt3,4u “ p0, 0q, and ℎt4,5u “ p0, 1q, formulation (1.16) would satisfy the indepen-

dent branching property. However, independent branching formulations provide an

immediate proof that the property holds, which is not the case for general MIP for-

mulations.

2.3 Independent branching scheme representability

We now offer a complete characterization of the expressive power of the independent

branching formulation framework. To start, we observe that, given 𝒯 , it is not suffi-

ciently general to capture every possible formulation for CDCp𝒯 q. For example, there

is the restriction that each alternative 𝑃 p𝐿𝑗
𝑖 q restricts the 𝜆 variables to lie on a single

face of the standard simplex. A natural first question is then: given a family of sets

𝒯 , do any 𝑘-way IB schemes exist for CDCp𝒯 q? We provide an answer, based on a

graphical characterization of the constraint.

2.3.1 A graphical characterization

Definition 5. Let 𝐻 def
“ p𝑉, ℰq be a hypergraph with hyperedge set ℰ Ď 2𝑉 .

• The rank of 𝐻 is 𝑟p𝐻q
def
“ max𝐸Pℰ |𝐸|.

• A (weakly) independent set of 𝐻 is a set 𝑈 Ď 𝑉 that does not contain any

element of ℰ as a subset.
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• The conflict hypergraph of 𝒯 is 𝐻𝑐
𝒯

def
“ p𝑉, ℰ𝒯 q, where

ℰ𝒯
def
“ t 𝐸 Ď 𝑉 | 𝐸 is a minimal infeasible set u .

Lemma 1. The maximal independent sets 𝑇 in 𝐻𝑐
𝒯 are exactly the sets 𝑇 P 𝒯 .

Proof. If 𝑇 P 𝒯 , it is obviously a feasible set, and so we have immediately that 𝑇 is

an independent set in 𝐻𝑐
𝒯 . If it is not maximal, then we could add some 𝑣 P 𝑉 z𝑇 and

maintain independence. However, any independent set of 𝐻𝑐
𝒯 must be contained in a

feasible set 𝑇 1 P 𝒯 , which would violate our irredundancy assumption (i.e. 𝑇 Yt𝑣u Ď

𝑇 1 P 𝒯 , 𝑇 P 𝒯 , and 𝑇 Ĺ 𝑇 Y t𝑣u Ď 𝑇 1).

If 𝑇 is a maximal independent set in 𝐻𝑐
𝒯 , then it must be a feasible set with

respect to 𝒯 as well. As it is maximal, there is no set 𝑇 P 𝒯 with 𝑇 Ĺ 𝑇 , and so we

must have 𝑇 P 𝒯 as well.

Theorem 1. A 𝑘-way IB scheme for CDCp𝒯 q exists if and only if 𝑟p𝐻𝑐
𝒯 q ď 𝑘.

In particular, if ℰ𝒯 “
!

𝐸𝑗 “ t𝑒𝑗1, . . . , 𝑒
𝑗
|𝐸𝑗 |
u

)𝑡

𝑗“1
is the hyperedge set for the conflict

hypergraph 𝐻𝑐
𝒯 , then an 𝑟p𝐻𝑐

𝒯 q-way IB scheme for CDCp𝒯 q is given by

𝐿𝑗
𝑖 “

$

’

&

’

%

𝑉 zt𝑒𝑗𝑖u 𝑖 ď |𝐸𝑗|

H o.w.
@𝑖 P J𝑟p𝐻𝑐

𝒯 qK, 𝑗 P J𝑡K. (2.6)

Proof. To show the “if” direction, it suffices to show the validity of (2.6). First note

that every minimally infeasible set 𝐸𝑗 P ℰ𝒯 is rendered infeasible by level 𝑗, which

implies that every infeasible set is rendered infeasible as well. Then note that for any

𝑇 P 𝒯 and for any 𝑗 P J𝑡K, we have 𝐸𝑗 Ę 𝑇 , so there exists 𝑖 P J|𝐸𝑗|K such that

𝑒𝑗𝑖 P 𝐸
𝑗z𝑇 . Hence, 𝑇 P 𝐿𝑗

𝑖 and 𝑇 is feasible for level 𝑗.

To show the “only if” direction, assume for a contradiction that there exists a 𝑘-way

IB scheme with 𝑘 ď 𝑟p𝐻𝑐
𝒯 q ´ 1. Take a minimal infeasible set 𝐸 “ t𝑒1, . . . , 𝑒𝑟u P ℰ𝒯 ,

where 𝑟 “ 𝑟p𝐻𝑐
𝒯 q. Then take 𝑗 P J𝑡K as a level of the IB scheme that renders

𝐸 infeasible. By the minimality of 𝐸, we have that, for all ℓ P J𝑟K, there exists

some 𝑖pℓq P J𝑘K such that 𝐸pℓq
def
“ 𝐸zt𝑒ℓu Ď 𝐿𝑗

𝑖pℓq. As 𝑘 ă 𝑟, we may apply the
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pigeonhole principle to see that there must exist some distinct ℓ1, ℓ2 P J𝑟K such that

𝑖pℓ1q “ 𝑖pℓ2q, and such that 𝐸pℓ1q Ď 𝐿𝑗
𝑖pℓ1q and 𝐸pℓ2q Ď 𝐿𝑗

𝑖pℓ2q. As 𝐸 “ 𝐸pℓ1q Y 𝐸pℓ2q

and 𝐿𝑗
𝑖pℓ1q “ 𝐿𝑗

𝑖pℓ2q, this implies that 𝐸 Ď 𝐿𝑗
𝑖pℓ1q, which contradicts our supposition

that level 𝑗 rendering 𝐸 infeasible.

Throughout, we will say that CDCp𝒯 q is 𝑘-way IB-representable (or pairwise IB-

representable for 𝑘 “ 2) if it admits a 𝑘-way IB scheme.

2.3.2 Cardinality constraints

Our first application of Theorem 1 is to derive a strong restriction on the existence

of multi-way IB schemes for the cardinality constraint.

Corollary 1. The cardinality constraint of degree ℓ given by the family of sets 𝒯 ”

𝒯 card
𝑛,ℓ is 𝑘-way IB-representable if and only if 𝑘 ą ℓ.

Proof. Direct from Theorem 1 by observing that 𝑟p𝐻𝑐
𝒯 q “ ℓ` 1.

We observe that the IB scheme (2.6), when applied to the cardinality constraint,

is a natural MIP formulation for the “conjunctive normal form” [11], and is unlikely

to be practical for even moderately large ℓ. In addition, both specialized constraint

branching schemes for cardinality constraints [68] and the binary variable branching

induced by standard formulations for cardinality constraints are quite imbalanced.

The existence of a pairwise independent branching scheme for cardinality constraints

would likely have finally produced the sought-after balanced constraint branching.

However, Corollary 1 implies that such a balanced constraint branching cannot be

produced via IB schemes; or, equivalently, by constraint branchings that do not use

general inequality constraints (i.e. are only multi-variable branchings).

2.3.3 Polygonal partitions of the plane

Consider a (nonconvex) bounded region in the plane Ω Ă R2 that describes all possible

locations for a UAV, as described in Chapter 1.3.6. Assume that Ω can be partitioned

into polyhedra t𝑃 𝑖u𝑑𝑖“1 such that
Ť𝑑

𝑖“1 𝑃
𝑖 “ Ω and their interiors do not overlap
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(intp𝑃 𝑖q X intp𝑃 𝑗q “ H for each distinct 𝑖, 𝑗 P J𝑑K). We note that this partition

will not, in general, be unique, and its selection can have a significant effect on

questions of representability or formulation size. Figure 2-2 illustrates this for a

convex region with a “hole,” with three ways to partition the resulting nonconvex

region into convex polyhedra. Once this partition is fixed, we describe each region

𝑃 𝑖 as a V-polyhedra, and so the corresponding combinatorial disjunctive constraint

is given by 𝒯 “ pextp𝑃 𝑖qq𝑑𝑖“1 and 𝑉 “
Ť

t𝑇 P 𝒯 u. We additionally forbid partitions

with “internal vertices” by requiring that

𝑣 P 𝑃 𝑖
ðñ 𝑣 P extp𝑃 𝑖

q @𝑖 P J𝑑K, 𝑣 P 𝑉, (2.7)

so that 𝒯 corresponds to the maximal elements of a polyhedral complex [140, Section

5.1]. For example, the second and third partitions in Figure 2-2 satisfy this condition,

while the first does not.

In this setting, minimal infeasible sets have a natural characterization.

Theorem 2. Take bounded Ω Ă R2 and a polyhedral partition t𝑃 𝑖u𝑑𝑖“1 of Ω satisfying

the internal vertex condition (2.7). If 𝒯 “ textp𝑃 𝑖qu𝑑𝑖“1, then 𝑟p𝐻𝑐
𝒯 q ď 3.

Proof. Take some minimal infeasible hyperedge 𝐸 P ℰ𝒯 of 𝐻𝑐
𝒯 , assuming for contra-

diction that 𝑟 “ |𝐸| ą 3, and label the points 𝐸 “ t𝑣𝑖u𝑟𝑖“1. First, we show that the

points may not be in general position, i.e. that without loss of generality (w.l.o.g.)

𝑣𝑟 P Convpt𝑣𝑖u𝑟´1𝑖“1 q. Then, we argue that the points not being in general position

implies that t𝑣𝑖u𝑟´1𝑖“1 is also an infeasible set, violating the minimality condition.

Assume for contradiction that the points are in general position; that is, that

none can be written as a convex combination of the others. This implies that

extpConvp𝐸qq “ 𝐸. Assume that the ordering t𝑣1, . . . , 𝑣𝑟u forms a path around

the edges of Convp𝐸q; that is, 𝑣𝑖 and 𝑣𝑗 both lie on an edge of Convp𝐸q if and only

if |𝑖´ 𝑗| “ 1 or t𝑖, 𝑗u “ t1, 𝑟u.

Choose some set 𝑇 1 P 𝒯 and some 2 ă 𝑗 ă 𝑟 such that 𝑣1, 𝑣𝑗 P 𝑇 1 and 𝑣2 R 𝑇 1;

the associated polyhedron is 𝑃 1. Such a set exists, else 𝐸 is not a minimal infea-

sible set (choose instead 𝐸zt𝑣2u). Now choose 𝑇 2 P 𝒯 such that 𝑣2, 𝑣𝑟 P 𝑇 2; the
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associated polyhedron is 𝑃 2. Such as set exists, as t𝑣2, 𝑣𝑟u Ĺ 𝐸 and 𝐸 is minimal.

As the nodes 𝑣1, 𝑣2, 𝑣𝑗, 𝑣𝑟 are interlaced along the boundary of Convp𝐸q, we have

that Convpt𝑣1, 𝑣𝑗uq X Convpt𝑣2, 𝑣𝑟uq Ă Convp𝐸q is nonempty. As each of the four

points is on the boundary of Convp𝐸q, and the points are in general position, it fol-

lows that Convpt𝑣1, 𝑣𝑗uqXConvpt𝑣2, 𝑣𝑟uq “ intpConvpt𝑣1, 𝑣𝑗uqqX intpConvpt𝑣2, 𝑣𝑟uqq.

Therefore, there must exist some point 𝑦 with 𝑦 P intpConvpt𝑣1, 𝑣𝑗uqq Ď intp𝑃 1q and

𝑦 P intpConvpt𝑣2, 𝑣𝑟uqq Ď intp𝑃 2q. However, this implies that intp𝑃 1q X intp𝑃 2q ‰ H,

which contradicts the assumption that our sets partition the region Ω.

Finally, it just remains to show that t𝑣𝑖u𝑟´1𝑖“1 is also an infeasible set, and therefore

t𝑣𝑖u𝑟𝑖“1 cannot be a minimal infeasible set. Assume for contradiction that it is not:

i.e. that there exists some 𝑗 such that t𝑣𝑖u𝑟´1𝑖“1 Ď extp𝑃 𝑗q. But this implies that 𝑣𝑟 P 𝑉

and 𝑣𝑟 P Convp𝐸q Ď 𝑃 𝑗, yet 𝑣𝑟 R extp𝑃 𝑗q, a contradiction of the internal vertices

assumption.

In other words, every polyhedral partition of the plane is 3-way independent

branching-representable, and pairwise IB representability can be checked in time poly-

nomial in |𝒯 | (for example, by enumerating the subsets of 𝑉 of cardinality 3). To

illustrate, in Figure 2-2 we depict the three possible cases for a partition with respect

to Theorem 2: 1) it does not satisfy the internal vertices condition, 2) it admits a

pairwise IB scheme (𝑟p𝐻𝑐
𝒯 q “ 2), or 3) it does not admit a pairwise IB scheme, but

does admit a 3-way IB scheme (𝑟p𝐻𝑐
𝒯 q “ 3).

Furthermore, we argue that we can always represent a obstacle avoidance con-

straint in such a way that it admits a pairwise IB scheme. Inspecting Figure 2-2, we

see that the region Ω is the same in each, and it is only the partition of Ω that can

potentially lead to constraints that are not pairwise IB-representable. Therefore, the

obstacle avoidance constraint is invariant to the specification of the partition, and if

any polyhedral partitioning exists, then it is always possible to construct one that

satisfies the conditions of Theorem 2.1 We provide a sketch of the argument and

construction techniques in Appendix B.

1Note that this result does not carry over to piecewise linear functions defined over a partition
of Ω, as the choice of the partition is intimately connected with the values the function may take.
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Figure 2-2: Partitions of a nonconvex region in the plane obtained by removing a
central non-convex portion from a convex polyhedron. (Left) The first partition
does not satisfy the internal vertices condition (2.7), (Center) the second partition
admits a pairwise IB scheme, and (Right) the third partition admits a 3-way IB
scheme but not a pairwise one.

2.3.4 Pairwise IB-representable constraints

We now return to the constraints introduced in Chapter 1.3 which always admit

pairwise independent branching schemes.

The SOS2 constraint

Our first example of a constraint that is always pairwise IB-representable is the

SOS2p𝑁q constraint. Recall that 𝑁 “ 𝑑 ` 1, 𝑉 “ J𝑁K, and 𝒯 ” 𝒯 SOS2
𝑑 “ pt𝜏, 𝜏 `

1uq𝑑𝜏“1 for SOS2. Then ℰ𝒯 “ t t𝜏, 𝜏 ` 𝑡u | 𝜏, 𝜏 ` 𝑡 P J𝑁K, 𝑡 ě 2 u, 𝑟p𝐻𝑐
𝒯 q “ 2, and

formulation (2.6) has depth 𝑡 “
`

𝑁
2

˘

´𝑁 ` 1. However, Vielma and Nemhauser [135]

construct a pairwise IB scheme for SOS2p𝑁q constraints with depth logarithmic in

𝑁 . The construction is built around a Gray code [120], or sequence of distinct binary

vectors tℎ𝑖u𝑑𝑖“1 Ď t0, 1urlog2p𝑑qs where each adjacent pair pℎ𝑖, ℎ𝑖`1q differs in exactly

one component. Notationally, here and throughout, take ℎ0 def
“ ℎ1 and ℎ𝑑`1 def

“ ℎ𝑑. The

pairwise IB scheme is then given by

𝐿𝑗
“
 

𝜏 P J𝑁K
ˇ

ˇ ℎ𝜏´1
𝑗 “ 1 or ℎ𝜏

𝑗 “ 1
(

𝑅𝑗
“
 

𝜏 P J𝑁K
ˇ

ˇ ℎ𝜏´1
𝑗 “ 0 or ℎ𝜏

𝑗 “ 0
(
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for each 𝑗 P Jrlog2p𝑑qsK. We observe that the resulting formulation matches the lower

bound from Proposition 1 with respect to the number of binary variables and is

significantly smaller than formulation (2.6).

SOS𝑘

In this case where 𝒯 ” 𝒯 SOS
𝑁,𝑘 , then ℰ𝒯 “ t t𝜏, 𝜏 ` 𝑡u | 𝜏, 𝜏 ` 𝑡 P J𝑁K, 𝑡 ě 𝑘 ` 1 u and

𝑟p𝐻𝑐
𝒯 q “ 2.

Discretization of multilinear functions

Each infeasible set 𝑈 P ℰ𝒯 must necessarily contain two elements 𝑣, 𝑤 P 𝑈 with

||𝑣 ´ 𝑤||8 ą 1, and so we have that 𝑈 can be reduced to the infeasible pair t𝑣, 𝑤u.

Therefore, 𝑟p𝐻𝑐
𝒯 q “ 2, and any discretization of this form is pairwise IB-representable.

Grid triangulations

We show that 𝑟p𝐻𝑐
𝒯 q “ 2 by seeing that for any infeasible set 𝑈 Ď 𝑉 there exist

some distinct 𝑣, 𝑤 P 𝑈 such that t𝑣, 𝑤u is infeasible. Analogously to the case with

discretizations of multilinear functions above, if there are some 𝑣, 𝑤 P 𝑈 such that

||𝑣 ´𝑤||8 ą 1, then there does not exist any triangle on the grid that contains both,

so t𝑣, 𝑤u is also an infeasible set. Otherwise, we have that 𝑈 Ă t𝑟, 𝑟` 1u ˆ t𝑠, 𝑠` 1u

for some 𝑟, 𝑠, and that 𝑈 contains elements in both of the triangles in this square.

For each of the two triangles, we can select an element of 𝑈 that is not contained in

the other triangle, which yields an infeasible pair contained in 𝑈 . Therefore, any grid

triangulation is pairwise IB-representable.

Higher-dimensional grid triangulations

Take 𝒯 as corresponding to the 𝜂-dimensional standard grid triangulation, as given in

(1.13). By the same argument as above for discretizations of multilinear functions, we

can restrict ourselves to infeasible sets 𝑈 P ℰ𝒯 that are contained completely in one

subrectangle; w.l.o.g., take 𝑈 Ď t0, 1u𝜂. We show that 𝑟p𝐻𝑐
𝒯 q “ 2 via the following

proposition.
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Proposition 3. Take 𝒯 as the 𝜂-dimensional standard grid triangulation on 𝑉 “

t0, 1u𝜂, and a set 𝑈 Ď 𝑉 . For each 𝑣 P 𝑈 , define Ξp𝑣q
def
“ t 𝑖 P J𝜂K | 𝑣𝑖 “ 0 u. The

following are equivalent:

1. 𝑈 is an infeasible set.

2. There does not exist an ordering p𝑣𝑖1 , . . . , 𝑣𝑖|𝑈 |q of 𝑈 such that

Ξp𝑣𝑖1q Ď Ξp𝑣𝑖2q Ď ¨ ¨ ¨ Ď Ξp𝑣𝑖|𝑈 |q.

3. There exists some 𝑢,𝑤 P 𝑈 such that Ξp𝑢q Ę Ξp𝑤q and Ξp𝑤q Ę Ξp𝑢q.

Proof. 3 ùñ 1 Condition 3 states that there are some 𝑖, 𝑖1 P J𝜂K such that, w.l.o.g.,

𝑢𝑖 “ 𝑤𝑖1 “ 0 and 𝑢𝑖1 “ 𝑤𝑖 “ 1. Therefore, t𝑢,𝑤u is an infeasible set, since we cannot

have that 𝑥𝑖 ă 𝑥𝑖1 (feasibility for 𝑢) and 𝑥𝑖1 ă 𝑥𝑖 (feasibility for 𝑤) simultaneously, as

would be required for containment in one of the triangles 𝑇 𝜋.

1 ùñ 2 Presume for contrapositive that such an ordering does exist, and assume

w.l.o.g. that 𝑖𝑗 ” 𝑗 for each 𝑗 P J|𝑈 |K. Then we can select an permutation 𝜋 of J𝜂K

such that

t𝜋p𝑡qu
|Ξp𝑣1q|
𝑘“1 “ Ξp𝑣1q

t𝜋p𝑡qu
|Ξp𝑣𝑗`1q|

𝑘“|Ξp𝑣𝑗q|`1
“ Ξp𝑣𝑗`1qzΞp𝑣𝑗q @𝑗 P J|𝑈 | ´ 1K

t𝜋p𝑡qu𝜂
𝑘“|Ξp𝑣|𝑈 |q|`1

“ J𝜂Kz

˜

|𝑈 |
ď

𝑗“1

Ξp𝑣𝑗q

¸

.

In words, this permutation orders the elements of Ξp𝑣1q first. The next set of elements

in the permutation are those components Ξp𝑣2qzΞp𝑣1q which are one for 𝑣1, but zero

for 𝑣2. This is repeated for each 𝑗, leaving those not contained in any set until the

end of the ordering. This verifies that 𝑈 Ď 𝑇 𝜋, verifying that 𝑈 is a feasible set.

2 ùñ 3 Presume for contrapositive that no such 𝑢,𝑤 P 𝑈 satisfying 3 exist.

That is, for each 𝑢,𝑤 P 𝑈 , either Ξp𝑢q Ď Ξp𝑤q or Ξp𝑤q Ď Ξp𝑢q. In other words, the

sets tΞp𝑢qu𝑢P𝑈 are nested, and we can produce an ordering p𝑣𝑖1 , . . . , 𝑣𝑖|𝑈 |q satisfying

condition 2.
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Pairwise IB-representability follows from statement 3 in Proposition 3: each in-

feasible set 𝑈 Ď t0, 1u𝜂 can be reduced to an infeasible pair t𝑢,𝑤u Ď 𝑈 .

2.4 Pairwise independent branching schemes

The pairwise independent branching scheme framework was initially introduced by

Vielma and Nemhauser [135], where it was used to model particularly structured

piecewise linear functions. In the remainder of this chapter, we will focus on pairwise

IB schemes, and particularly at practical ways for constructing them.

2.4.1 Graphical representations of pairwise IB-representable

CDCs

From our covering assumption 𝑉 “
Ť

t𝑇 P 𝒯 u, we can see that |𝐸| ě 2 for each

𝐸 P ℰ𝒯 . By applying Theorem 1, we then immediately have that CDCp𝒯 q is pairwise

IB-representable if and only if 𝐻𝑐
𝒯 is (equivalent to) a graph. Along this line, for

any constraint we may define a conflict graph for CDCp𝒯 q as 𝐺𝑐
𝒯

def
“ p𝑉, 𝐸̄q, where

𝐸̄ ” 𝐸̄𝒯
def
“ t t𝑢, 𝑣u P r𝑉 s2 | t𝑢, 𝑣u is an infeasible set u is the set of all infeasible pairs

of elements of 𝑉 . Checking for pairwise IB-representability then reduces to verifying

if ℰ𝒯 “ 𝐸̄𝒯 . The following corollary of Theorem 1 shows that this can also be verified

by working only with 𝐺𝑐
𝒯 .

Corollary 2. CDCp𝒯 q is pairwise IB-representable if and only if the sets 𝒯 are

exactly the maximal independent sets of 𝐺𝑐
𝒯 .

Proof. If CDCp𝒯 q is pairwise IB-representable, then 𝐺𝑐
𝒯 is equivalent to 𝐻𝑐

𝒯 . By

applying Theorem 1, the maximal independent sets of 𝐺𝑐
𝒯 are exactly the elements

of 𝒯 . For the converse, assume for a contradiction that 𝒯 is exactly the maximal

independent sets of 𝐺𝑐
𝒯 , but that there exists some 𝐸 P ℰ𝒯 with |𝐸| ě 3. By the

minimal infeasibility of 𝐸, we have that t𝑟, 𝑠u R 𝐸̄𝒯 for any distinct 𝑟, 𝑠 P 𝐸, and

therefore 𝐸 is an independent set in 𝐺𝑐
𝒯 . This implies that 𝐸 is contained in a
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maximal independent 𝑇 . By assumption, 𝑇 P 𝒯 , which contradicts the infeasibility

of 𝐸.

Therefore, verifying general pairwise IB-representability reduces to enumerating

the maximal independent sets of 𝐺𝑐
𝒯 and identifying them to exactly the sets 𝒯 . As

an example, we can see that, for the cardinality constraint of degree ℓ with 2 ď ℓ ă 𝑁

given by the family 𝒯 ” 𝒯 card
𝑁,ℓ “ t 𝑇 Ă J𝑁K } 𝑇 | “ ℓ u, the only maximal independent

set of 𝐺𝑐
𝒯 is the entire ground set 𝑉 “ J𝑁K, which certainly cannot be identified with

𝒯 .

2.4.2 Representation at a given depth

Once a CDC has been shown to be pairwise IB-representable, a natural next question

is: what is the smallest possible depth at which we may construct an IB scheme?

Put another way , we ask if there exists a pairwise IB scheme for CDCp𝒯 q of some

given depth 𝑡. The answer to this question reduces to the existence of a graphical

decomposition of the conflict graph 𝐺𝑐
𝒯 .

Definition 6. A biclique cover of the graph 𝐺 “ p𝑉,𝐸q is a collection of complete

bipartite subgraphs t𝐺𝑗 “ p𝑉,𝐸𝑗qu
𝑡
𝑗“1 of 𝐺 that cover exactly the edges 𝐸 of 𝐺. For-

mally, this means that there are some sets tp𝐴𝑗, 𝐵𝑗qu𝑡𝑗“1 such that:

• H Ĺ 𝐴𝑗, 𝐵𝑗 Ĺ 𝑉 for each 𝑗 P J𝑡K,

• 𝐴𝑗 X𝐵𝑗 “ H for each 𝑗 P J𝑡K,

• 𝐸𝑗 “ 𝐴𝑗 ˚𝐵𝑗 def
“ t t𝑎, 𝑏u | 𝑎 P 𝐴𝑗, 𝑏 P 𝐵𝑗 u for each 𝑗 P J𝑡K, and

•
Ť𝑡

𝑗“1𝐸
𝑗 “ 𝐸.

For notational simplicity, we will often refer to the sets tp𝐴𝑗, 𝐵𝑗qu𝑡𝑗“1 as a biclique

cover, as we can recover the graphs 𝐺𝑗 directly.

The following theorem formalizes the equivalence between biclique covers and

pairwise IB schemes.
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Theorem 3. If tp𝐴𝑗, 𝐵𝑗qu𝑡𝑗“1 is biclique cover of the conflict graph 𝐺𝑐
𝒯 for pairwise

IB-representable CDCp𝒯 q, then a pairwise IB scheme for CDCp𝒯 q is given by

𝐿𝑗
“ 𝑉 z𝐴𝑗, 𝑅𝑗

“ 𝑉 z𝐵𝑗
@𝑗 P J𝑡K. (2.8)

Conversely, if tp𝐿𝑗, 𝑅𝑗qu𝑡𝑗“1 is a pairwise IB scheme for CDCp𝒯 q, then a biclique

cover of the conflict graph 𝐺𝑐
𝒯 is given by

𝐴𝑗
“ 𝑉 z𝐿𝑗, 𝐵𝑗

“ 𝑉 z𝑅𝑗
@𝑗 P J𝑡K. (2.9)

Proof. For the first part, take 𝐸̄ as the edge set of 𝐺𝑐
𝒯 . To see that any 𝑇 P 𝒯 is

feasible for the IB scheme (2.8), note that if 𝑇 Ę 𝐿𝑗 and 𝑇 Ę 𝑅𝑗, then there exist

some 𝑢 P 𝐴𝑗 X 𝑇 and 𝑣 P 𝐵𝑗 X 𝑇 . However, this implies that t𝑢, 𝑣u P 𝐴𝑗 ˚ 𝐵𝑗 Ď 𝐸̄,

which is a contradiction of feasibility as t𝑢, 𝑣u Ď 𝑇 and 𝑇 P 𝒯 . Furthermore, as

tp𝐴𝑗, 𝐵𝑗qu𝑡𝑗“1 is a biclique cover of 𝐺𝑐
𝒯 , for every t𝑢, 𝑣u P 𝐸̄ we have that there exists

some level 𝑗 P J𝑡K such that, w.l.o.g., 𝑢 P 𝐴𝑗 and 𝑣 P 𝐵𝑗. This implies that 𝑢 R 𝐿𝑗 and

𝑣 R 𝑅𝑗 by their construction, and as CDCp𝒯 q is pairwise IB-representable, then any

infeasible set for CDCp𝒯 q is also infeasible for the proposed IB scheme. Therefore,

(2.8) is a valid pairwise IB scheme.

For the second part, note that 𝐴𝑗 X𝐵𝑗 “ H for all 𝑗 P J𝑡K, and that the covering

portion of Assumption 2 implies that 𝐿𝑗Y𝑅𝑗 “ 𝑉 . Therefore, it only remains to show

that 𝐸̄ “
Ť𝑡

𝑗“1 𝐸̄
𝑗. For that, first note that as 𝐿𝑗Y𝑅𝑗 “ 𝑉 , we have that 𝐴𝑗 “ 𝑅𝑗z𝐿𝑗

and 𝐵𝑗 “ 𝐿𝑗z𝑅𝑗. The containment 𝐸̄ Ď
Ť𝑡

𝑗“1 𝐸̄
𝑗 then follows by noting that, as

tp𝐿𝑗, 𝑅𝑗qu𝑡𝑗“1 is a valid pairwise IB scheme, each minimal infeasible set t𝑢, 𝑣u P 𝐸̄ has

some level 𝑗 P J𝑡K such that t𝑢, 𝑣u Ę 𝐿𝑗 and t𝑢, 𝑣u Ę 𝑅𝑗. Then, as 𝐿𝑗 Y 𝑅𝑗 “ 𝑉 ,

we have (w.l.o.g.) that 𝑢 P 𝐿𝑗z𝑅𝑗 ” 𝐵𝑗 and 𝑏 P 𝑅𝑗z𝐿𝑗 ” 𝐴𝑗, and so t𝑎, 𝑏u P 𝐸̄𝑗.

For the reverse containment
Ť𝑡

𝑗“1 𝐸̄
𝑗 Ď 𝐸̄, take some arbitrary 𝑗 P J𝑡K and some

edge t𝑎, 𝑏u P 𝐸̄𝑗. From the definition of our biclique cover, we have that w.l.o.g.

𝑎 P 𝐴𝑗 ” 𝑅𝑗z𝐿𝑗 and 𝑏 P 𝐵𝑗 ” 𝐿𝑗z𝑅𝑗. Therefore, t𝑎, 𝑏u is an infeasible set for the IB

scheme, and thus for CDCp𝒯 q as well, and so t𝑎, 𝑏u P 𝐸̄.
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We can now naturally frame the problem of finding a minimum depth pairwise IB

scheme as the minimum biclique cover problem [51, 57]. Unfortunately, the decision

version of this problem is known to be NP-complete [109] and inapproximable within

a factor of |𝑉 |1{3´𝜖 if 𝑃 ‰ 𝑁𝑃 [61], even for bipartite graphs. However, we note that

it is simple to construct a MIP feasibility problem for finding a pairwise IB scheme

of a given depth 𝑡, which gives us a way to algorithmically find the smallest pairwise

IB scheme for a specific (fixed) CDC.

Proposition 4. A biclique cover of depth 𝑡 exists for the conflict graph 𝐺𝑐
𝒯 “ p𝑉, 𝐸̄q

of pairwise IB-representable CDCp𝒯 q if and only if the following admits a feasible

solution:

𝑧𝑟,𝑠𝑗 ď 𝑥𝑟
𝑗 ` 𝑥𝑠

𝑗

𝑧𝑟,𝑠𝑗 ď 𝑥𝑟
𝑗 ` 𝑦𝑟𝑗

𝑧𝑟,𝑠𝑗 ď 𝑥𝑠
𝑗 ` 𝑦𝑠𝑗

𝑧𝑟,𝑠𝑗 ď 𝑦𝑟𝑗 ` 𝑦𝑠𝑗

𝑧𝑟,𝑠𝑗 ě 𝑥𝑟
𝑗 ` 𝑦𝑠𝑗 ´ 1

𝑧𝑟,𝑠𝑗 ě 𝑥𝑠
𝑗 ` 𝑦𝑟𝑗 ´ 1

,

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

-

@𝑗 P J𝑡K, @t𝑟, 𝑠u P r𝑉 s2 (2.10a)

𝑥𝑟
𝑗 ` 𝑦𝑟𝑗 ď 1 @𝑗 P J𝑡K, @𝑟 P 𝑉 (2.10b)
𝑡
ÿ

𝑗“1

𝑧𝑟,𝑠𝑗 ě 1 @t𝑟, 𝑠u P 𝐸̄ (2.10c)

𝑡
ÿ

𝑗“1

𝑧𝑟,𝑠𝑗 “ 0 @t𝑟, 𝑠u P r𝑉 s2z𝐸̄ (2.10d)

𝑥𝑟
P t0, 1u𝑡 @𝑟 P 𝑉 (2.10e)

𝑦𝑟 P t0, 1u𝑡 @𝑟 P 𝑉 (2.10f)

𝑧𝑟,𝑠 P t0, 1u𝑡 @t𝑟, 𝑠u P r𝑉 s2. (2.10g)

Moreover, for any feasible solution p𝑥, 𝑦, 𝑧q, a biclique cover for 𝐺𝑐
𝒯 is given by 𝐴𝑗 “

 

𝑟 P 𝑉
ˇ

ˇ 𝑥𝑟
𝑗 “ 1

(

and 𝐵𝑗 “
 

𝑟 P 𝑉
ˇ

ˇ 𝑦𝑟𝑗 “ 1
(

for each 𝑗 P J𝑡K.
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Proof. The interpretation of the decision variables is:

𝑥𝑟
𝑗 “ 1

“

𝑟 P 𝐴𝑗
‰

(2.11a)

𝑦𝑟𝑗 “ 1
“

𝑟 P 𝐵𝑗
‰

(2.11b)

𝑧𝑟,𝑠𝑗 “ 1
“

𝑥𝑟
𝑗 “ 𝑦𝑠𝑗 “ 1 or 𝑥𝑠

𝑗 “ 𝑦𝑟𝑗 “ 1
‰

. (2.11c)

That is, 𝑧𝑟,𝑠𝑗 “ 1 iff level 𝑖 separates infeasible edge t𝑟, 𝑠u P 𝐸̄, which is enforced via

(2.10a-2.10b). To show that the existence of a biclique cover implies that (2.10) is

feasible, you may consider the proposed solution (2.11) and see that it is feasible for

(2.10).

To show that a feasible solution maps to a biclique cover, consider some p𝑥, 𝑦, 𝑧q

feasible for (2.10), and the corresponding sets 𝐴𝑗 “
 

𝑟 P 𝑉
ˇ

ˇ 𝑥𝑟
𝑗 “ 1

(

and 𝐵𝑗 “
 

𝑟 P 𝑉
ˇ

ˇ 𝑦𝑟𝑗 “ 1
(

for each 𝑗 P J𝑡K. Inequalities (2.10b) ensure that 𝐴𝑗 X 𝐵𝑗 “ H

for each 𝑗 P J𝑡K. Constraints (2.10d) ensure that 𝐴𝑗 ˚ 𝐵𝑗 Ď 𝐸̄ for each 𝑗 P J𝑡K.

Therefore, each p𝐴𝑗, 𝐵𝑗q is a biclique of 𝐺𝑐
𝒯 . Furthermore, (2.10c) ensures that that

there is at least one level 𝑗 that separates each infeasible edge t𝑟, 𝑠u P 𝐸̄. Therefore,

tp𝐴𝑗, 𝐵𝑗qu𝑡𝑗“1 is a biclique cover of 𝐺𝑐
𝒯 .

Additionally, Cornaz and Fonlupt [36] present a MIP formulation (with an expo-

nential number of constraints that can be efficiently separated) to find the minimum

level biclique cover of a graph.

We can now restate the MIP formulation from [135] (which is a special case of

(2.3) with 𝑘 “ 2) in terms of biclique covers of 𝐺𝑐
𝒯 .

Proposition 5 (Theorem 5, [135]; Theorem 1, [133]). If CDCp𝒯 q is pairwise inde-

pendent branching-representable and tp𝐴𝑗, 𝐵𝑗qu𝑡𝑗“1 is a biclique cover for 𝐺𝑐
𝒯 , then
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the following is an ideal formulation for CDCp𝒯 q:

ÿ

𝑣P𝐴𝑗

𝜆𝑣 ď 𝑧𝑗 @𝑗 P J𝑡K (2.12a)

ÿ

𝑣P𝐵𝑗

𝜆𝑣 ď 1´ 𝑧𝑗 @𝑗 P J𝑡K (2.12b)

p𝜆, 𝑧q P ∆𝑉
ˆ t0, 1u𝑡. (2.12c)

We end the section by noting that the relation between biclique covers and inde-

pendent sets has also been exploited in the study of boolean functions, particularly in

the equivalence between posiforms and maximum weighted stable sets (e.g. [37, The-

orem 13.16]). In fact, formulation (2.12) is reminiscent of formulation (13.45–13.50)

in [37, Theorem 13.13]. The main difference between these formulations is that in the

context of [37] the 𝜆 variables will be binary variables not constrained to lie in the

standard simplex. For this reason inequalities (2.12a–2.12b) appear disaggregated in

[37, Theorem 13.13] in the form 𝜆𝑣 ď 𝑧𝑗 for all 𝑣 P 𝐴𝑗, 𝑗 P J𝑡K. However, the resulting

formulation is not ideal (See [135, Section 5] for more details). Still, the combinatorial

aspects of this connection could prove useful for constructing small IB schemes.

For the remainder, we will explore instances where we can, in closed form, con-

struct small (asymptotically optimal) IB schemes for families of particularly struc-

tured CDCs. We will apply our methodology to these specific structures, and produce

small, closed-form IB schemes. In particular, this allows us to construct novel, small

MIP formulations for these constraints.

2.5 A simple IB scheme and its limitations

To start, we show that any pairwise IB-representable CDC admits an IB scheme of

depth |𝑉 |. If |𝑉 | is smaller than |𝒯 |, this already offers a drop in size from (1.17). This

IB scheme covers all edges incident to node with the simple biclique corresponding

to the star centered at that node.

Proposition 6 (Covering with Stars). For pairwise IB-representable CDCp𝒯 q, a

71



biclique cover for 𝐺𝑐
𝒯 “ p𝑉, 𝐸̄q is given by:

𝐴𝑣
“ t𝑣u, 𝐵𝑣

“
 

𝑢 P 𝑉
ˇ

ˇ t𝑢, 𝑣u P 𝐸̄
(

@𝑣 P 𝑉.

Proof. By construction of the sets, we see that each t𝑟, 𝑠u P 𝐸̄𝑣 ” 𝐴𝑣 ˚𝐵𝑣 corresponds

to an infeasible edge: that is, 𝐸̄𝑣 Ď 𝐸̄ for each 𝑣, and so
Ť

𝑣P𝑉 𝐸̄𝑣 Ď 𝐸̄. Furthermore,

each infeasible edge t𝑟, 𝑠u P 𝐸̄ is infeasible for levels 𝑟 and 𝑠, and so 𝐸̄ Ď
Ť

𝑣P𝑉 𝐸̄𝑣.

Therefore, this construction forms a valid biclique cover of the conflict graph.

This gives us an upper bound of |𝑉 | on the minimum depth for any pairwise

IB-representable CDC. However, if we exploit the specific structure of a CDC, we

can typically get much smaller formulations. For instance, consider the following

two instances of the SOS3p𝑁q constraint for small values of 𝑁 . First, consider the

instance with 𝑁 “ 6, where |𝑉 | “ 6 and 𝒯 “ pt1, 2, 3u, t2, 3, 4u, t3, 4, 5u, t4, 5, 6uq.

Therefore, |𝒯 | “ 4, yielding a lower bound of depth log2p4q “ 2 from Proposition 1.

However, there does not exist a biclique cover of depth 2 (which can be verified via

Proposition 4), though one of depth 3 does exist:

𝐴1
“ t1u, 𝐵1

“ t4, 5, 6u

𝐴2
“ t1, 2u, 𝐵2

“ t5, 6u

𝐴3
“ t1, 2, 3u, 𝐵3

“ t6u.

We can see the proposed IB scheme on the left side of Figure 2-3. For clarity, the

associated MIP formulation for the CDC from Proposition 5 is

𝜆1 ď 𝑧1 𝜆4 ` 𝜆5 ` 𝜆6ď 1´ 𝑧1

𝜆1 ` 𝜆2 ď 𝑧2 𝜆5 ` 𝜆6 ď 1´ 𝑧2

𝜆1 ` 𝜆2 ` 𝜆3 ď 𝑧3 𝜆6 ď 1´ 𝑧3

p𝜆, 𝑧q P ∆6
ˆ t0, 1u3.

Next, we consider 𝑁 “ 10, where we also cannot attain the log2p8q “ 3 lower
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bound. However, a biclique for this the conflict graph of this constraint is

𝐴1
“ t1, 8, 9, 10u, 𝐵1

“ t4, 5u (2.14a)

𝐴2
“ t1, 2, 10u, 𝐵2

“ t5, 6, 7u (2.14b)

𝐴3
“ t1, 2, 3, 9, 10u, 𝐵3

“ t6u (2.14c)

𝐴4
“ t1, 2, 3, 4u, 𝐵4

“ t7, 8, 9, 10u, (2.14d)

as seen on the right side of Figure 2-3. The corresponding MIP formulation is

𝜆1 ` 𝜆8 ` 𝜆9 ` 𝜆10 ď 𝑧1 𝜆4 ` 𝜆5 ď 1´ 𝑧1

𝜆1 ` 𝜆2 ` 𝜆10 ď 𝑧2 𝜆5 ` 𝜆6 ` 𝜆7 ď 1´ 𝑧2

𝜆1 ` 𝜆2 ` 𝜆3 ` 𝜆9 ` 𝜆10 ď 𝑧3 𝜆6 ď 1´ 𝑧3

𝜆1 ` 𝜆2 ` 𝜆3 ` 𝜆4 ď 𝑧4 𝜆7 ` 𝜆8 ` 𝜆9 ` 𝜆10ď 1´ 𝑧4

p𝜆, 𝑧q P ∆10
ˆ t0, 1u4.

1 65432 1 6 7 8 9 105432

1 65432 1 6 7 8 9 105432

1 65432 1 6 7 8 9 105432

1 6 7 8 9 105432

Figure 2-3: Visualizations of the biclique covers presented in the text for (Left)
SOS3p6q and (Right) SOS3p10q. Each row corresponds to some level 𝑗, and the
elements of 𝐴𝑗 and 𝐵𝑗 are the blue squares and green diamonds, respectively.

The ad-hoc construction for SOS3p6q suggests a more general construction for

SOS𝑘p𝑁q when 𝑘 ď 𝑁{2 (assume for convenience that 𝑁 is even). Consider the sets
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given by

𝐴𝑗
“ t1, . . . , 𝑗u Y t𝑗 `𝑁{2` 𝑘, . . . , 𝑁u, 𝐵𝑗

“ t𝑗 ` 𝑘, . . . , 𝑗 `𝑁{2u

for each 𝑗 P J𝑁{2K. It is straightforward to see that this yields a biclique cover of the

conflict graph for SOS𝑘p𝑁q of depth 𝑁{2. Therefore, with this simple operation, we

have constructed an ideal formulation for SOS𝑘p𝑁q with size strictly smaller than 𝑁 ,

the size of the non-extended formulation (1.17).

Based on the second example (2.14), we know that this construction is, in general,

not the smallest possible. In Chapter 2.8.4, we will see how we can systematically

construct small biclique covers (and MIP formulations) for SOS𝑘(𝑁) with arbitrary

𝑘 and 𝑁 , using techniques we will now develop.

2.6 Systematic construction of biclique covers

As discussed in Chapter 2.3.4, there exists an IB scheme for the SOS2 constraint of

optimal depth that can be constructed using a Gray code. The following proposition

shows how the validity of this scheme can easily be proven by reinterpreting it through

a biclique cover.

Proposition 7. Take 𝑁 “ 𝑑`1, a Gray code tℎ𝑖u𝑑𝑖“1 Ď t0, 1u
rlog2p𝑑qs, and let ℎ0 def

“ ℎ1

and ℎ𝑑`1 def
“ ℎ𝑑. If 𝒯 ” 𝒯 SOS2

𝑑 and 𝐺𝑐
𝒯 is the conflict graph of SOS2(𝑁), then a

biclique cover for 𝐺𝑐
𝒯 of depth rlog2p𝑑qs is given by

𝐴𝑗
“
 

𝜏 P J𝑁K
ˇ

ˇ ℎ𝜏´1
𝑗 “ ℎ𝜏

𝑗 “ 0
(

(2.15a)

𝐵𝑗
“
 

𝜏 P J𝑁K
ˇ

ˇ ℎ𝜏´1
𝑗 “ ℎ𝜏

𝑗 “ 1
(

(2.15b)

for all 𝑗 P Jrlog2p𝑑qsK.

Proof. For the SOS2(𝑁) constraint we have that 𝐸̄𝒯 “ t t𝑟, 𝑠u P J𝑁K2 | 𝑟 ` 2 ď 𝑠 u.

Take any infeasible pair t𝑟, 𝑠u P 𝐸̄𝒯 . As 𝑟 ` 2 ď 𝑠, we conclude that 𝑟 ´ 1 ă

𝑟 ă 𝑠 ´ 1 ă 𝑠, and so it must be that ℎ𝑟´1, ℎ𝑟 ‰ ℎ𝑠´1, ℎ𝑠. The set of components
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which flip values between the two pairs of adjacent codes pℎ𝑟´1, ℎ𝑟q and pℎ𝑠´1, ℎ𝑠q

is 𝐼 “
 

𝑗 P Jrlog2p𝑑qsK
ˇ

ˇ ℎ𝑟´1
𝑗 ‰ ℎ𝑟

𝑗 or ℎ𝑠´1
𝑗 ‰ ℎ𝑠

𝑗

(

, and |𝐼| ď 2 as we have selected a

Gray code. Now it must be the case that there is some component 𝑗 P Jrlog2p𝑑qsKz𝐼

wherein ℎ𝑟´1
𝑗 “ ℎ𝑟

𝑗 ‰ ℎ𝑠´1
𝑗 “ ℎ𝑠

𝑗 , else we conclude that two of the vectors ℎ𝑖 “ ℎℓ

coincide for some 𝑖 P t𝑟´ 1, 𝑟u and ℓ P t𝑠´ 1, 𝑠u, a contradiction of their uniqueness.

Then t𝑟, 𝑠u P 𝐸𝑗, i.e. it is covered by the 𝑗-th level of the biclique. Furthermore, we

observe that no edges of the form t𝑟, 𝑟 ` 1u will be contained in the biclique cover,

as it is not possible that ℎ𝑟´1
𝑗 “ ℎ𝑟

𝑗 “ 0 (resp. “ 1) and ℎ𝑟
𝑗 “ ℎ𝑟`1

𝑗 “ 1 (resp. “ 0)

simultaneously.

1 32

1 32

13 2

1 3 4 52 1 3 4 52

Figure 2-4: The recursive construction for biclique covers for SOS2. The first row is a
single biclique that covers the conflict graph for SOS2(3) (𝐴1,1 in blue, 𝐵1,1 in green).
The second row shows the construction which duplicates the ground set t1, 2, 3u and
inverts the ordering on the second copy. The third row shows the identification of the
nodes that yields a valid biclique for SOS2(5). This biclique is then combined with
a second that covers all edges between nodes identified with the first copy and those
identified with the second, giving a biclique cover for SOS2(5) with two levels.

Interestingly, we can also view this construction recursively if we use a specific

Gray code known as the binary reflected Gray code [120]. For SOS2(2𝑘), we will take

𝐸̄𝑘 as the edge set for the corresponding conflict graph. First, with 𝑘 “ 1, 𝑑 “ 2𝑘 “ 2,

and 𝑁 “ 2𝑘 ` 1 “ 3, then 𝐸̄1 “ tt1, 3uu. A complete biclique cover is given by the
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single biclique 𝐴1,1 “ t1u and 𝐵1,1 “ t3u. As we see in Figure 2-4, we can construct a

biclique cover for SOS2(5) (i.e. 𝑘 “ 2) by stitching together two copies of the biclique

p𝐴1,1, 𝐵1,1q in the following way. We construct two copies of the node set for 𝑘 “ 1,

invert the second, and identify the last node from the first set with the first node with

the second set. Then we can readily construct a mapping of the biclique p𝐴1,1, 𝐵1,1q

for 𝑘 “ 1 to a biclique for 𝑘 “ 2, using the node identification, as 𝐴2,1 “ t1, 5u and

𝐵2,1 “ t3u. This will cover all edges in 𝐸̄2 with both incident nodes in the first half

of the nodes, or both in the second half of the nodes (along with some other edges

in 𝐸̄2, as well). To cover all edges with one adjacent node in the first half, and the

other in the second half, we construct a second biclique of the form 𝐴2,2 “ t1, 2u and

𝐵2,2 “ t4, 5u.

We can repeat this construction with 𝑘 “ 3 to get the three level biclique cover

𝐴3,1
“ t1, 5, 9u, 𝐵3,1

“ t3, 7u

𝐴3,2
“ t1, 2, 8, 9u, 𝐵3,2

“ t4, 5, 6u

𝐴3,3
“ t1, 2, 3, 4u, 𝐵3,2

“ t6, 7, 8, 9u.

Applying this repeatedly yields a biclique cover for 𝐸̄𝑘`1 as tp𝐴𝑘`1,𝑖, 𝐵𝑘`1,𝑖qu
𝑘`1
𝑖“1 ,

where

𝐴𝑘`1,𝑖
“

ď

𝑢P𝐴𝑘,𝑖

 

𝑢, 2𝑘`1
` 2´ 𝑢

(

, 𝐵𝑘`1,𝑖
“

ď

𝑣P𝐵𝑘,𝑖

 

𝑣, 2𝑘`1
` 2´ 𝑣

(

@𝑖 P J𝑘K

𝐴𝑘`1,𝑘`1
“
 

1, . . . , 2𝑘
(

, 𝐵𝑘`1,𝑘`1
“
 

2𝑘
` 2, . . . , 2𝑘`1

` 1
(

.

We will refer to the resulting formulation via (5) as the logarithmic independent

branching (LogIB) formulation for the SOS2 constraint, and observe that it coincides

with the logarithmic formulation presented by Vielma and Nemhauser [133]. Addi-

tionally, we note that it readily generalizes to the case where 𝑑 is not a power-of-two.

Additionally, we can readily state this recursive construction in a more general

form, where we adapt a biclique cover for one graph into a biclique cover for another

graph that is created in some specific way.
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Lemma 2. Take some graph 𝐺 “ pJ𝑚 ` 1K, 𝐸q, and define 𝐺2 “ pJ2𝑚 ` 1K, 𝐸2q,

where

𝐸2
“ 𝐸 Y t t2𝑚` 2´ 𝑢, 2𝑚` 2´ 𝑣u | t𝑢, 𝑣u P 𝐸 u Y

`

J𝑚K ˚ J𝑚` 2, 2𝑚` 1K
˘

where J𝑎, 𝑏K def
“ t𝑎, . . . , 𝑏u. If tp𝐴𝑗, 𝐵𝑗qu𝑡𝑗“1 is a biclique cover of 𝐺, then tp𝐴𝑗, 𝐵̃𝑗qu

𝑡`1
𝑗“1

is a biclique cover of 𝐺2, where

𝐴𝑗
“

ď

𝑢P𝐴𝑗

t𝑢, 2𝑚` 2´ 𝑢u, 𝐵̃𝑗
“

ď

𝑣P𝐵𝑗

t𝑣, 2𝑚` 2´ 𝑣u @𝑗 P J𝑡K

𝐴𝑡`1
“ t1, . . . ,𝑚u, 𝐵̃𝑡`1

“t𝑚` 2, . . . , 2𝑚` 1u.

In the remainder of this work, we will see how we may apply similar graphical

results to systematically construct small biclique covers for the conflict graphs of

constraints by exploiting their specific structure.

2.7 Biclique covers for graph products and discretiza-

tions of multilinear functions

Consider the discretization of multilinear functions described in Chapter 1.3.5, given

by 𝑉 “
ś𝜂

𝑖“1J𝑁𝑖K and 𝒯 “ p
ś𝜂

𝑖“1t𝑘𝑖, 𝑘𝑖 ` 1u | 𝑘 P
ś𝜂

𝑖“1J𝑑𝑖Kq (recall that 𝑁𝑖 “ 𝑑𝑖 ` 1

for each 𝑖). We can interpret this constraint as a 𝜂-dimensional version of the SOS2

constraint, or as the Cartesian product of 𝜂 SOS2 constraints. This can be formalized

through the following definition and straightforward lemma.

Definition 7. The (disjunctive) graph product of a family of graphs t𝐺𝑖 “ p𝑉 𝑖, 𝐸𝑖qu
𝜂
𝑖“1

is
Ž𝜂

𝑖“1𝐺
𝑖 def
“ p𝑉𝑃 , 𝐸𝑃 q, where 𝑉𝑃 “

ś𝜂
𝑖“1 𝑉

𝑖 and

𝐸𝑃 “
 

t𝑢, 𝑣u P r𝑉𝑃 s
2
ˇ

ˇ D𝑖 P J𝜂K s.t. t𝑢𝑖, 𝑣𝑖u P 𝐸
𝑖
(

.

Lemma 3. Let 𝑉 “
ś𝜂

𝑖“1J𝑁𝑖K and 𝒯 “ p
ś𝜂

𝑖“1t𝑘𝑖, 𝑘𝑖 ` 1u | 𝑘 P
ś𝜂

𝑖“1J𝑑𝑖Kq be a 𝜂-

dimensional discretization of a multilinear function, and 𝐺𝑐
𝒯 be the corresponding
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conflict graph. If 𝐺𝑖 is the conflict graph of SOS2(𝑁𝑖) for each 𝑖 P J𝜂K, then 𝐺𝑐
𝒯 “

Ž𝜂
𝑖“1𝐺

𝑖.

Using this characterization, we can easily construct an IB scheme for discretiza-

tions of multilinear functions by taking the graph products of IB schemes for the

SOS2 constraint.

Lemma 4. Take a family of graphs t𝐺𝑖 “ p𝑉 𝑖, 𝐸𝑖qu
𝜂
𝑖“1, and a biclique cover tp𝐴𝑖,𝑗, 𝐵̃𝑖,𝑗qu

𝑡𝑖
𝑗“1

for each 𝐺𝑖. Then a biclique cover for
Ž𝜂

𝑖“1𝐺
𝑖 is given by

Ť𝜂
𝑖“1tp𝐴

𝑖,𝑗, 𝐵𝑖,𝑗qu
𝑡𝑖
𝑗“1, where

𝐴𝑖,𝑗
“

˜

𝑖´1
ź

ℓ“1

𝑉 ℓ

¸

ˆ 𝐴𝑖,𝑗
ˆ

˜

𝜂
ź

ℓ“𝑖`1

𝑉 ℓ

¸

𝐵𝑖,𝑗
“

˜

𝑖´1
ź

ℓ“1

𝑉 ℓ

¸

ˆ 𝐵̃𝑖,𝑗
ˆ

˜

𝜂
ź

ℓ“𝑖`1

𝑉 ℓ

¸

for all 𝑖 P J𝜂K and 𝑗 P J𝑡𝑖K.

Corollary 3. Let 𝑉 “
ś𝜂

𝑖“1J𝑁𝑖K and 𝒯 “ p
ś𝜂

𝑖“1t𝑘𝑖, 𝑘𝑖 ` 1u | 𝑘 P
ś𝜂

𝑖“1J𝑑𝑖Kq de-

scribe a 𝜂-dimensional discretization of a multilinear function, and take 𝐺𝑐
𝒯 as its

conflict graph. If for each 𝑖 P J𝜂K we have a biclique cover tp𝐴𝑖,𝑗, 𝐵̃𝑖,𝑗qu
𝑡𝑖
𝑗“1 for the

conflict graph of SOS2p𝑁𝑖q, then a biclique cover for 𝐺𝑐
𝒯 of depth

ř𝜂
𝑖“1 𝑡𝑖 is given by

Ť𝜂
𝑖“1tp𝐴

𝑖,𝑗, 𝐵𝑖,𝑗qu
𝑡𝑖
𝑗“1, where

𝐴𝑖,𝑗
“

!

𝑥 P 𝑉
ˇ

ˇ

ˇ
𝑥𝑖 P 𝐴

𝑖,𝑗
)

, 𝐵𝑖,𝑗
“

!

𝑥 P 𝑉
ˇ

ˇ

ˇ
𝑥𝑖 P 𝐵̃

𝑖,𝑗
)

@𝑖 P J𝜂K, 𝑗 P J𝑡𝑖K.

In particular, if we take tℎ𝑖,𝑗u
𝑑𝑖
𝑗“1 Ď t0, 1u

rlog2p𝑑𝑖qs as a Gray code for each 𝑖 P J𝜂K,

where ℎ𝑖,0 ” ℎ𝑖,1 and ℎ𝑖,𝑑𝑖`1 ” ℎ𝑖,𝑑𝑖, then a biclique cover for 𝐺𝑐
𝒯 of depth

ř𝜂
𝑖“1rlog2 𝑑𝑖s

is given by:

𝐴𝑖,𝑗
“
 

𝑥 P 𝑉
ˇ

ˇ D𝛾 s.t. 𝑥𝑖 “ 𝛾, ℎ𝑖,𝛾´1
𝑗 “ ℎ𝑖,𝛾

𝑗 “ 0
(

𝐵𝑖,𝑗
“
 

𝑥 P 𝑉
ˇ

ˇ D𝛾 s.t. 𝑥𝑖 “ 𝛾, ℎ𝑖,𝛾´1
𝑗 “ ℎ𝑖,𝛾

𝑗 “ 1
(

for each 𝑖 P J𝜂K and 𝑗 P Jrlog2p𝑑𝑖qsK.
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We note that, since |𝒯 | “
ś𝜂

𝑖“1 𝑑𝑖, by Proposition 1 this construction yields a for-

mulation that is asymptotically optimal (with respect to number of binary variables)

for any possible binary MIP formulation, up to an additive factor of at most 𝜂.

Furthermore, we can specialize this to the bilinear case studied by Misener et al.

[106].

Corollary 4. There exists a biclique cover for a the grid discretization of a bilinear

function (𝜂 “ 2) with 𝑑2 “ 0 of depth rlog2p𝑑1qs.

This result yields an ideal MIP formulation for the outer-approximation of bilinear

terms with rlog2p𝑑1qs binary variables, 2p𝑑1 ` 1q auxiliary continuous variables (the

𝜆 variables, one for element in 𝑉 ), and 2rlog2p𝑑1qs general inequality constraints. In

contrast, the logarithmic formulation from Misener et al. [106] has rlog2p𝑑1qs binary

variables, 2rlog2p𝑑1qs`1 auxiliary continuous variables, at least 2rlog2p𝑑1qs`6 general

inequality constraints, and is not ideal in general (see Appendix A). Therefore, we

gain an ideal formulation with a naturally induced constraint branching at the price

of a modest number of additional auxiliary continuous variables. Furthermore, our

formulation generalizes readily to discretization along the second dimension (𝑑2 ě 1),

for non-uniform discretizations, and for higher dimensional multilinear functions (𝜂 ą

2).

2.8 Completing biclique covers via graph unions

Another useful graphical technique for our heuristic constructions will be to combine

together biclique covers, each of which is designed to cover a substructure of the

constraint. For example, the conflict graph of a grid triangulation of the plane is

equivalent to the conflict graph of a 2-dimensional grid discretization of a multilinear

function, with one extra edge added for each subrectangle in the grid. Therefore,

a biclique cover of a grid triangulation can be obtained from a biclique cover of

a 2-dimensional discretization of a multilinear function (i.e. from Corollary 3) by

completing it with some number additional bicliques that cover those extra edges.
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This construction can be formalized in the following way.

Definition 8. The graph union of a family of graphs t𝐺𝑖 “ p𝑉 𝑖, 𝐸𝑖qu
𝜂
𝑖“1 is

Ť𝜂
𝑖“1𝐺

𝑖 def
“

p𝑉𝑈 , 𝐸𝑈q, where 𝑉𝑈 “
Ť𝜂

𝑖“1 𝑉
𝑖 and 𝐸𝑈 “

Ť𝜂
𝑖“1𝐸

𝑖.

Lemma 5. Take a family of graphs t𝐺𝑖 “ p𝑉 𝑖, 𝐸𝑖qu
𝜂
𝑖“1 and a corresponding biclique

cover tp𝐴𝑖,𝑗, 𝐵𝑖,𝑗qu
𝑡𝑖
𝑗“1 of 𝐺𝑖 for each 𝑖 P J𝜂K. Then

Ť𝜂
𝑖“1tp𝐴

𝑖,𝑗, 𝐵𝑖,𝑗qu
𝑡𝑖
𝑗“1 is a biclique

cover of
Ť𝜂

𝑖“1𝐺
𝑖.

We can apply Lemma 5 to construct biclique covers for the grid triangulations

depicted in Figure 1-2. First, we apply the biclique cover construction from Corol-

lary 3 to cover all edges not sharing a subrectangle. This is depicted in the first two

subfigures of each row in Figure 2-5. To cover the remaining 4 edges created by the

triangulation, we see that the number of additional levels needed is dependent on the

combinatorial structure. Additionally, in all three cases we can verify through Propo-

sition 4 that the resulting biclique cover is of the smallest possible depth. The first

Figure 2-5: Independent branching schemes for the three triangulations presented in
Figure 1-2, each given its own row.The sets 𝐴𝑗 and 𝐵𝑗 are given by the blue squares
and green diamonds, respectively, in the 𝑖-th subfigure of the corresponding row.

example is the “Union Jack” triangulation [127] for 𝑑1 “ 𝑑2 “ 2, where the results
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of Vielma and Nemhauser [135] show that for this triangulation the biclique cover

from Corollary 3 can be completed with a single additional biclique cover for any 𝑑1

and 𝑑2. The second triangulation is a K1 triangulation [84] for 𝑑1 “ 𝑑2 “ 2, and an

early version of [131] showed that for this triangulation the biclique can always be

completed with two additional bicliques.

In contrast, for generic triangulations such as the third one, it was not previously

known if the biclique cover can always be completed with fewer than the trivial 𝑑1 ¨𝑑2

levels needed to cover each “diagonal” edge with its own additional biclique. First, we

can adapt Proposition 6 to cover the extra edges with stars, but in general this will

result in Θp𝑑1 ¨ 𝑑2q stars, and hence the same number of additional levels. To reduce

this, we need a way to stick the stars together into more complicated bicliques. It is

also possible to use graph colorings for a certain class of triangulations (subsuming

the Union Jack and K1 triangulations as special cases), to cover the extra edges with

either one or two additional bicliques [67]. In general, it turns out that we may cover

the remaining edges for any grid triangulation with a constant number of additional

levels by applying the following simple lemma.

Lemma 6. Let tp𝐴𝑗, 𝐵𝑗qu𝑡𝑗“1 be a family of bicliques of a graph 𝐺. If p𝐴𝑘, 𝐵ℓq is also

a biclique of 𝐺 for each 𝑘, ℓ P J𝑡K, then
´

Ť𝑡
𝑗“1𝐴

𝑗,
Ť𝑡

𝑗“1𝐵
𝑗
¯

is a biclique of 𝐺.

The strength of Lemma 6 comes from the fact that many CDCs of practical

interest have a local structure (i.e. sets in 𝒯 have small cardinality, or, equivalently,

the minimum degree of the conflict graph is close to the total number of nodes). In

this case, the condition of Lemma 6 will hold for families of stars centered at nodes

that are located “sufficiently far apart.”

2.8.1 Grid triangulations of the plane

We may now present a biclique cover construction for generic grid triangulations, with

no further assumptions on the structure of the triangles such as in [133, 135], whose

depth scales like log2p𝑑1q` log2p𝑑2q`Op1q. In the same way as depicted in Figure 2-5,

we construct the biclique cover by using Lemma 5 to complete the construction of
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Corollary 3. For this, we will use the following corollary of Lemma 6 that shows how

to combine certain stars centered at sufficiently separated nodes.

Corollary 5. Take a regular grid 𝑉 “ J𝑁1KˆJ𝑁2K where 𝑁1 ” 𝑑1`1 and 𝑁2 ” 𝑑2`1,

let 𝒯 be a grid triangulation of r1, 𝑁1s ˆ r1, 𝑁2s, and take 𝐺𝑐
𝒯 “ p𝑉, 𝐸̄q as its conflict

graph. Define 𝐴p𝑤q
def
“ t𝑤u and 𝐵p𝑤q

def
“

 

𝑤 ` 𝑣
ˇ

ˇ 𝑣 P t´1, 1u2, t𝑤,𝑤 ` 𝑣u P 𝐸̄
(

for

each 𝑤 P 𝑉 . Then
¨

˝

ď

𝑤P𝑉Xp𝑢`3Z2q

𝐴p𝑤q,
ď

𝑤P𝑉Xp𝑢`3Z2q

𝐵p𝑤q

˛

‚

is a biclique of 𝐺𝑐
𝒯 for any 𝑢 P 𝑉 .

Proof. Direct from Lemma 6 by taking 𝑢 P 𝑉 and the family of bicliques

tp𝐴p𝑤q, 𝐵p𝑤qu𝑤P𝑉Xp𝑢`3Z2q

and noting that, if 𝑢, 𝑣 P 𝑉 X p𝑢 ` 3Z2q, then ||𝑢 ´ 𝑣||8 ě 3, and so p𝐴p𝑢q, 𝐵p𝑣qq is

also a biclique for 𝐺𝑐
𝒯 .

Figure 2-6 shows two possible bicliques that can be obtained from Corollary 5.

We can now use Lemma 5 and Corollary 5, along with the biclique cover derived

in Corollary 3, to obtain a biclique cover for any triangulation with an asymptotically

optimal number of levels.

Theorem 4. Take 𝑉 “ J𝑁1Kˆ J𝑁2K where 𝑁1 ” 𝑑1 ` 1 and 𝑁2 ” 𝑑2 ` 1, and let 𝒯

be a grid triangulation of r1, 𝑁1s ˆ r1, 𝑁2s. Take 𝐺𝑐
𝒯 “ p𝑉, 𝐸̄q as its conflict graph.

Presume that tp𝐴1,𝑗, 𝐵̃1,𝑗qu
𝑡1
𝑗“1 and tp𝐴2,𝑗, 𝐵̃2,𝑗qu

𝑡2
𝑗“1 are biclique covers for the conflict

graphs of the SOS2(𝑁1) and SOS2(𝑁2) constraints, respectively. Furthermore, define

𝐴3,𝑢
“ 𝑉 X p𝑢` 3Z2

q

𝐵3,𝑢
“

ď

𝑤P𝑉Xp𝑢`3Z2q

 

𝑤 ` 𝑣
ˇ

ˇ 𝑣 P t´1, 1u2, t𝑤,𝑤 ` 𝑣u P 𝐸̄
(

for each 𝑢 P t0, 1, 2u2. Then tp𝐴1,𝑗, 𝐵1,𝑗qu
𝑡1
𝑗“1Ytp𝐴

2,𝑗, 𝐵2,𝑗qu
𝑡2
𝑗“1Ytp𝐴

3,𝑢, 𝐵3,𝑢qu𝑢Pt0,1,2u𝜂
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Figure 2-6: Two bicliques constructed via Corollary 5 for a grid triangulation with
𝑑1 “ 𝑑2 “ 8. On the left the construction follows by taking 𝑢 “ p1, 1q; on the right,
with 𝑢 “ p2, 3q. For each level, the sets 𝐴p𝑢q and 𝐵p𝑢q are given by the blue squares
and green diamonds, respectively.

is a biclique cover for 𝐺𝑐
𝒯 , where

𝐴1,𝑗
“ 𝐴1,𝑗

ˆ J𝑁2K, 𝐵1,𝑗
“ 𝐵̃1,𝑗

ˆ J𝑁2K,

𝐴2,𝑗1
“ J𝑁1Kˆ 𝐴2,𝑗1 , 𝐵2,𝑗1

“ J𝑁1Kˆ 𝐵̃2,𝑗1 ,

for each 𝑗 P J𝑡1K and 𝑗1 P J𝑡2K.

In particular, if tℎ1,𝑖u
𝑑1
𝑖“1 Ď t0, 1urlog2p𝑑1qs and tℎ2,𝑖u

𝑑2
𝑖“1 Ď t0, 1urlog2p𝑑2qs are Gray

codes, where ℎ1,0 def
“ ℎ1,1, ℎ1,𝑑1`1 def

“ ℎ1,𝑑1, ℎ2,0 def
“ ℎ2,1, and ℎ2,𝑑2`1 def

“ ℎ2,𝑑2, then a
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biclique cover of 𝐺𝑐
𝒯 of depth rlog2p𝑑1qs` rlog2p𝑑2qs` 9 is given by:

𝐴1,𝑗
“
 

p𝑥, 𝑦q P 𝑉
ˇ

ˇ ℎ1,𝑥´1
𝑗 “ ℎ1,𝑥

𝑗 “ 1
(

(2.16a)

𝐵1,𝑗
“
 

p𝑥, 𝑦q P 𝑉
ˇ

ˇ ℎ1,𝑥´1
𝑗 “ ℎ1,𝑥

𝑗 “ 0
(

(2.16b)

𝐴2,𝑗1
“
 

p𝑥, 𝑦q P 𝑉
ˇ

ˇ ℎ2,𝑦´1
𝑗1 “ ℎ2,𝑦

𝑗1 “ 1
(

(2.16c)

𝐵2,𝑗1
“
 

p𝑥, 𝑦q P 𝑉
ˇ

ˇ ℎ2,𝑦´1
𝑗1 “ ℎ2,𝑦

𝑗1 “ 0
(

(2.16d)

𝐴3,𝑢
“ 𝑉 X p𝑢` 3Z2

q (2.16e)

𝐵3,𝑢
“

ď

𝑤P𝑉Xp𝑢`3Z2q

 

𝑤 ` 𝑣
ˇ

ˇ 𝑣 P t´1, 1u2, t𝑤,𝑤 ` 𝑣u P 𝐸̄
(

(2.16f)

for all 𝑗 P Jrlog2p𝑑1qsK, 𝑗1 P Jrlog2p𝑑2qsK, and 𝑢 P t0, 1, 2u2.

Proof. Let 𝐺𝑥 def
“ pJ𝑁1K, 𝐸𝑥q and 𝐺𝑦 def

“ pJ𝑁2K, 𝐸𝑦q be the conflict graphs for SOS2(𝑁1)

and SOS2(𝑁2), respectively. Furthermore, let

𝐺3 def
“

ď

𝑢Pt0,1,2u2

p𝑉,𝐴3,𝑢
˚𝐵3,𝑢

q “

¨

˝𝑉,
ď

𝑢Pt0,1,2u2

p𝐴3,𝑢
˚𝐵3,𝑢

q

˛

‚.

Then we see that 𝐺𝒯 “ p𝐺
𝑥 ˆ 𝐺𝑦q Y 𝐺3 by noting that all diagonal edges of 𝐸 (i.e.

those of the form t𝑤,𝑤 ` 𝑣u P 𝐸 for 𝑤 P 𝑉 and 𝑣 P t´1, 1u2) are included in 𝐺3,

and observing that 𝐺3 is a subgraph of 𝐺𝑐
𝒯 . The result then follows from Lemma 4,

Lemma 5, and Corollary 5.

By referring to Proposition 1, we recover a rlog2p2𝑑1 ¨𝑑2qs ě rlog2p𝑑1qs` rlog2p𝑑2qs

lower bound on the depth of any biclique cover for a grid triangulation, and see that

our construction yields a MIP formulation that is within a constant additive factor

of the smallest possible.

2.8.2 Higher-dimensional grid triangulations

We can see that the “stencil” construction for bivariate grid triangulations readily

generalizes to higher-dimensional grid triangulations as well.
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Theorem 5. Take 𝑉 “
ś𝜂

𝑖“1J𝑁𝑖K where 𝑁1 ” 𝑑1 ` 1 and 𝑁2 ” 𝑑2 ` 1, and let 𝒯 be

a grid triangulation of
ś𝜂

𝑖“1r1, 𝑁𝑖s. Take 𝐺𝑐
𝒯 “ p𝑉, 𝐸̄q as its conflict graph. For each

𝑖 P J𝜂K, presume that tp𝐴𝑖,𝑗, 𝐵̃𝑖,𝑗qu
𝑡1
𝑗“1 is a biclique cover for the conflict graph of the

SOS2(𝑁𝑖) constraint. Furthermore, define

𝐴𝜂`1,𝑢
“ 𝑉 X p𝑢` 3Z𝜂

q

𝐵𝜂`1,𝑢
“

ď

𝑤P𝑉Xp𝑢`3Z𝜂q

 

𝑤 ` 𝑣
ˇ

ˇ 𝑣 P t´1, 1u𝜂, t𝑤,𝑤 ` 𝑣u P 𝐸̄
(

for each 𝑢 P t0, 1, 2u𝜂. Then
`
Ť𝜂

𝑖“1tp𝐴
𝑖,𝑗, 𝐵𝑖,𝑗qu

𝑡𝑖
𝑗“1

˘

Y tp𝐴𝜂`1,𝑢, 𝐵𝜂`1,𝑢qu𝑢Pt0,1,2u2 is a

biclique cover for 𝐺𝑐
𝒯 , where

𝐴𝑖,𝑗
“

˜

𝑖´1
ź

ℓ“1

J𝑁𝑖K

¸

ˆ 𝐴𝑖,𝑗
ˆ

˜

𝜂
ź

ℓ“𝑖`1

J𝑁𝑖K

¸

𝐵𝑖,𝑗
“

˜

𝑖´1
ź

ℓ“1

J𝑁𝑖K

¸

ˆ 𝐵̃𝑖,𝑗
ˆ

˜

𝜂
ź

ℓ“𝑖`1

J𝑁𝑖K

¸

for each 𝑖 P J𝜂K and 𝑗 P J𝑡1K.

In particular, using the Gray code construction as in Theorem 4 for each SOS2(𝑁𝑖q

constraint yields a biclique cover of 𝐺𝑐
𝒯 of depth

ř𝜂
𝑖“1rlog2p𝑑𝑖qs` 3𝜂.

2.8.3 An even smaller formulation for bivariate grid triangu-

lations

We are now in position to present a second biclique cover for arbitrary grid triangu-

lations that is smaller than the one presented in Theorem 4, but more complex. We

refer to this formulation as the 6-stencil formulation, and return to it in Chapter 4.2.2,

where we will see that it offers substantial computational improvements over existing

formulations for arbitrary grid triangulations.

Theorem 6. Consider an arbitrary grid triangulation on the grid 𝑉 “ J𝑁1Kˆ J𝑁2K,

where 𝑁1 ” 𝑑1`1 and 𝑁2 ” 𝑑2`1. There exists an independent branching formulation

of depth rlog2p𝑑1qs` rlog2p𝑑2qs` 6.
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To prove the result, we describe the construction in detail. First, we adopt the

rlog2p𝑑1qs ` rlog2p𝑑2qs levels as defined in (2.16a-2.16d). These levels cover all edges

in the conflict graph that are “far apart.” To accomplish the triangle selection, we

construct a biclique representation tp𝐴3,𝑘, 𝐵3,𝑘qu6𝑘“1 to cover all “nearby” edges 𝐸̄𝑁 “

t t𝑢, 𝑣u P r𝑉 s2 } |𝑢´ 𝑣||8 “ 1 u by applying a “stencil” construction along diagonal

and anti-diagonal lines. Appropriately, we call the resulting independent branching

representation the 6-stencil, and we illustrate the construction in Figure 2-8.

For each 𝜌 P Z, consider the diagonal and anti-diagonal line on the grid 𝑉 , offset

by 𝜌 as

𝐷𝐿𝜌
def
“ pp𝑗, 𝑗 ` 𝜌q P 𝑉 : 𝑗 P Nq

𝐴𝐷𝐿𝜌
def
“ pp𝑗, 𝑑2 ` 2´ 𝑗 ` 𝜌q P 𝑉 : 𝑗 P Nq ,

with the ordering of the elements given as the first component increases (i.e. 𝐷𝐿0 “

pp1, 1q, p2, 2q, . . . , pmint𝑑1`1, 𝑑2`1u,mint𝑑1`1, 𝑑2`1uq). Take those nearby edges for

which both ends lie on the diagonal line 𝐷𝐿𝜌 as 𝐸̄𝐷𝐿𝜌 “
 

t𝑢, 𝑣u P 𝐸̄𝑁
ˇ

ˇ 𝑢, 𝑣 P 𝐷𝐿𝜌

(

,

and analogously with 𝐸̄𝐴𝐷𝐿𝜌 “
 

t𝑢, 𝑣u P 𝐸̄𝑁
ˇ

ˇ 𝑢, 𝑣 P 𝐴𝐷𝐿𝜌

(

for the anti-diagonal

lines. We can observe that 𝐸̄𝑁 “ p
Ť

𝜌PZ 𝐸̄
𝐷𝐿𝜌q Y p

Ť

𝜌PZ 𝐸̄
𝐴𝐷𝐿𝜌q.

Fix some 𝜌 P Z, and focus for the moment on the diagonal line 𝐷𝐿𝜌, which we

presume is nonempty (else take 𝐴𝐷𝐿,𝜌 “ 𝐵̃𝐷𝐿,𝜌 “ H and proceed). Take p𝑢1, . . . , 𝑢𝜁q

as the ordering of the subset Φ𝜌 “
Ť

tt𝑢, 𝑣u P 𝐸̄𝐷𝐿𝜌u Ď 𝐷𝐿𝜌 of the breakpoints on

the diagonal line incident to edges in 𝐸̄𝑁 ; it inherits its ordering from the ordering

of 𝐷𝐿𝜌. We will take 𝐴𝐷𝐿,𝜌, 𝐵̃𝐷𝐿,𝜌 Ă 𝑉 as a partition of Φ𝜌 (i.e. 𝐴𝐷𝐿,𝜌Y 𝐵̃𝐷𝐿,𝜌 “ Φ𝜌

and 𝐴𝐷𝐿,𝜌X 𝐵̃𝐷𝐿,𝜌 “ H) in the following way: we place 𝑢1 P 𝐴𝐷𝐿,𝜌, then 𝑢2 P 𝐵̃𝐷𝐿,𝜌 if

t𝑢1, 𝑢2u P 𝐸̄𝑁 , and otherwise 𝑢2 P 𝐴𝐷𝐿,𝑖. We repeat this procedure for 𝑘 “ 2, 3, . . . , 𝜁,

alternating the sets we place subsequent elements in (i.e. t𝑢𝑘´1, 𝑢𝑘u P 𝐴𝐷𝐿,𝜌˚𝐵̃𝐷𝐿,𝜌) if

and only if the pair corresponds to a “nearby edge” (i.e. t𝑢𝑘´1, 𝑢𝑘u P 𝐸̄𝑁); otherwise,

we place the subsequent element in the same set as the previous one (i.e. either

t𝑢𝑘´1, 𝑢𝑘u P 𝐴𝐷𝐿,𝜌 or t𝑢𝑘´1, 𝑢𝑘u P 𝐵̃𝐷𝐿,𝜌). Intuitively, this means that if there is

a “gap” in 𝐸̄𝑁 along the diagonal line, we ensure that both ends of the gap lie in
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the same side of the biclique, to avoid adding an edge that does not appear in 𝐸̄

and ensure we satisfy condition 3. As a concrete example, refer to the first panel in

Figure 2-8. For 𝜌 “ 3, we have

𝐴𝐷𝐿,3
“ tp1, 4q, p4, 7q, p5, 8qu and 𝐵̃𝐷𝐿,3

“ tp2, 5q, p3, 6q, p6, 9qu ,

whereas for 𝜌 “ ´3 we have

𝐴𝐷𝐿,´3
“ tp5, 2q, p8, 5qu and 𝐵̃𝐷𝐿,´3

“ tp6, 3q, p7, 4qu .

After applying an analogous construction to the anti-diagonal edges to produce

tp𝐴𝐴𝐷𝐿,𝜌, 𝐵̃𝐴𝐷𝐿,𝜌qu𝜌PZ, we have constructed the requisite bicliques to satisfy conditions

2 and 3:

𝐸̄𝑁
Ď

˜

ď

𝜌PZ

p𝐴𝐷𝐿,𝜌
˚ 𝐵̃𝐷𝐿,𝜌

q

¸

Y

˜

ď

𝜌PZ

p𝐴𝐴𝐷𝐿,𝜌
˚ 𝐵̃𝐴𝐷𝐿,𝜌

q

¸

Ď 𝐸̄.

It just remains to show that we can aggregate these (infinitely many) bicliques into

just 6 levels, while maintaining the inclusion in the edge set 𝐸̄. For this, note that

for any 𝜌, 𝜅 P Z with |𝜌 ´ 𝜅| ě 3, we have that ||𝑢 ´ 𝑣||8 ě 2 for each 𝑢 P 𝐷𝐿𝜌 and

𝑣 P 𝐷𝐿𝜅. Furthermore, t𝑢, 𝑣u P 𝐸̄z𝐸̄𝑁 for any such 𝑢, 𝑣 P 𝑉 such that ||𝑢´ 𝑣||8 ě 2.

Therefore, for any 𝑎 P 𝐴𝐷𝐿,𝜌 Ď 𝐷𝐿𝜌 and 𝑣 P 𝐵̃𝐷𝐿,𝜅 Ď 𝐷𝐿𝑗, we have that t𝑢, 𝑣u P 𝐸̄

necessarily. This holds analogously for anti-diagonal lines, so if we define

𝐴𝐷𝐿,𝛼
“

ď

𝜌Pp3Z`𝛼q

𝐴𝐷𝐿,𝜌, 𝐵𝐷𝐿,𝛼
“

ď

𝜌Pp3Z`𝛼q

𝐵̄𝐷𝐿,𝜌

𝐴𝐴𝐷𝐿,𝛼
“

ď

𝜌Pp3Z`𝛼q

𝐴𝐴𝐷𝐿,𝜌, 𝐵𝐴𝐷𝐿,𝛼
“

ď

𝜌Pp3Z`𝛼q

𝐵̄𝐴𝐷𝐿,𝜌

for each 𝛼 P t0, 1, 2u we have that

𝐸̄𝑁
Ď

¨

˝

ď

𝛼Pt0,1,2u

𝐴𝐷𝐿,𝛼
˚𝐵𝐷𝐿,𝛼

q

˛

‚Y

¨

˝

ď

𝛼Pt0,1,2u

𝐴𝐴𝐷𝐿,𝛼
˚𝐵𝐴𝐷𝐿,𝛼

q

˛

‚Ď 𝐸̄,
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thus completing the construction.

2.8.4 The SOS𝑘 constraint

In this subsection, we will see how we may use the graph union construction to pro-

duce an IB scheme for SOS𝑘(𝑁) of depth log2p𝑁{𝑘q`Op𝑘q, for any 𝑘 and 𝑁 . Similar

to the construction for grid triangulations, we first construct an initial family of bi-

cliques based on the SOS2 constraint. Next, we expand this onto a larger node set by

the graph product construction. Finally, we complete the biclique cover by combining

a family of sufficiently separated stars. For grid triangulations, this approach meant

applying SOS2 constraints horizontally and vertically, and taking a graph product

of the two. One way to interpret this is as an SOS2 constraint applied to groups

of aggregated nodes in the ground set (e.g. when SOS2 is applied horizontally, we

group all elements with the same horizontal coordinate into a single group). For the

SOS𝑘(𝑁) constraint, we will apply the SOS2 constraint to the groups obtained by

partitioning the 𝑁 original ground elements into r𝑁{𝑘s subsets of 𝑘 consecutive ele-

ments. The following simple lemma shows how this grouping can also be represented

through a graph product. For the remainder of the section, we assume that 𝑁{𝑘 is

integer; if this is not true, we artificially introduce r𝑁{𝑘s𝑘 ´𝑁 nodes such that this

is the case, construct the formulation in Theorem 7, and remove the artificial nodes

from the formulation afterwards.

Lemma 7. Let 𝑉 “ J𝑁K, 𝑘 ď 𝑁 , 𝒯 ” 𝒯 SOS
𝑁,𝑘 correspond to the SOS𝑘p𝑁q constraint,

and 𝐺𝑐
𝒯 “ p𝑉, 𝐸̄q be the corresponding conflict graph. Let 𝐺1 “ pJ𝑁{𝑘K, 𝐸1q be the

conflict graph for SOS2(𝑁{𝑘) and 𝐺2 “ pJ0, 𝑘´1K,Hq be the empty graph on 𝑘 nodes.

Then 𝐺1 ˆ 𝐺2 is isomorphic to a subgraph 𝐺̂ “ p𝑉, 𝐸̂q of 𝐺𝑐
𝒯 wherein 𝐸̂ Ď 𝐸̄, and

each edge t𝑢, 𝑣u P 𝐸̄ with |𝑢´ 𝑣| ě 2𝑘 is contained t𝑢, 𝑣u P 𝐸̂.

Proof. Let 𝐺1 ˆ 𝐺2 “ p𝑉 1, 𝐸 1q. Consider the bijection 𝑓 : 𝑉 Ñ 𝑉 1 given by 𝑓p𝑢q “

pdivp𝑢, 𝑘q,modp𝑢, 𝑘qq, where divp𝑢, 𝑘q
def
“ t𝑢{𝑘u and modp𝑢, 𝑘q

def
“ 𝑢 ´ 𝑘 divp𝑢, 𝑘q are

the quotient and remainder of the division of 𝑢 by 𝑘, so that 𝑓´1p𝑚, 𝑟q “ 𝑘𝑚` 𝑟. We

have that tp𝑚, 𝑟q, p𝑚1, 𝑟1qu P 𝐸 1 if and only if t𝑚,𝑚1u P 𝐸1, which in turn is equivalent
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Figure 2-7: The aggregated SOS2 independent branching formulation for subrectangle
selection. The sets 𝐴1,𝑘 (resp. 𝐵1,𝑘) are the squares (resp. diamonds) in the first row;
similarly for the sets 𝐴2,𝑘 and 𝐵2,𝑘 in the second row.

Figure 2-8: The 6-stencil triangle selection independent branching formulation. The
sets 𝐴𝐷𝐿,𝛼 (resp. 𝐵𝐷𝐿,𝛼) are the squares (resp. diamonds) in the first row; similarly
for the sets 𝐴𝐴𝐷𝐿,𝛼 and 𝐵𝐴𝐷𝐿,𝛼 in the second row. The diagonal/antidiagonal lines
considered in each level are circled.
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to |𝑚´𝑚1| ě 2. Therefore, for any tp𝑚, 𝑟q, p𝑚1, 𝑟1qu P 𝐸 1, we have

ˇ

ˇ𝑓´1p𝑚, 𝑟q ´ 𝑓´1p𝑚1, 𝑟1q
ˇ

ˇ “ |p𝑘𝑚` 𝑟q ´ p𝑘𝑚1
` 𝑟1q|

“ |𝑘p𝑚´𝑚1
q ` p𝑟 ´ 𝑟1q|

ě 𝑘|𝑚´𝑚1
| ` |𝑟 ´ 𝑟1|

ě 2𝑘,

and hence t𝑓´1p𝑚, 𝑟q, 𝑓´1p𝑚1, 𝑟1qu P 𝐸̄, i.e. 𝐸̂ Ď 𝐸̄. For the second condition, see

that if 𝑢, 𝑣 P 𝑉 are such that |𝑢´ 𝑣| ě 2𝑘, then | divp𝑢q ´ divp𝑣q| ě 2, and therefore

t𝑓p𝑢q, 𝑓p𝑣qu P 𝐸 1.

We can then cover the remaining edges with the following bicliques obtained by

stitching together families of sufficiently separated stars.

Corollary 6. Let 𝑉 “ J𝑁K, 𝑘 ď 𝑁 , 𝒯 ” 𝒯 SOS
𝑁,𝑘 correspond to the SOS𝑘p𝑁q constraint,

and 𝐺𝑐
𝒯 be the corresponding conflict graph. For all 𝑤 P 𝑉 , define 𝐴p𝑤q

def
“ t𝑤u and

𝐵p𝑤q
def
“ t 𝑢 P 𝑉 | 𝑘 ď |𝑢´ 𝑤| ă 2𝑘 u. Then

¨

˝

ď

𝑤P𝑉Xp𝑢`3𝑘Zq

𝐴p𝑤q,
ď

𝑤P𝑉Xp𝑢`3𝑘Zq

𝐵p𝑤q

˛

‚

is a biclique of 𝐺𝑐
𝒯 for any 𝑢 P 𝑉 .

Proof. Direct from Lemma 6 by considering the family of bicliques

tp𝐴p𝑤q, 𝐵p𝑤qu𝑤P𝑉Xp𝑢`3𝑘Zq

and noting that, for distinct 𝑢, 𝑣 P 𝑉 X p𝑢` 3𝑘Zq, |𝑢´ 𝑣| ě 3𝑘, and so p𝐴p𝑢q, 𝐵p𝑣qq

is also a biclique for 𝐺𝑐
𝒯 .

Finally, we can combine both classes of bicliques with Lemma 5 to construct a

complete biclique cover for SOS𝑘p𝑁q. See Figure 2-9 for an example of the resulting

construction.
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Theorem 7. Let 𝑉 “ J𝑁K, 𝑘 ď 𝑁 , 𝒯 ” 𝒯 SOS
𝑁,𝑘 correspond to the SOS𝑘p𝑁q constraint

on 𝑉 , and 𝐺𝑐
𝒯 be the corresponding conflict graph. Let tp𝐴1,𝑗, 𝐵̃1,𝑗qu

𝑡1
𝑗“1 be a biclique

cover for the conflict graph of the SOS2(𝑁{𝑘) constraint, and take

𝐴2,𝑗1
“

r 𝑁
3𝑘 s
ď

𝑖“0

t 𝜏 P 𝑉 | 𝜏 “ 𝑗1 ` p3𝑖´ 3q𝑘 u

𝐵2,𝑗1
“

r 𝑁
3𝑘 s
ď

𝑖“0

t 𝜏 P 𝑉 | 𝑗1 ` p3𝑖´ 2q𝑘 ď 𝜏 ď 𝑗1 ` p3𝑖´ 1q𝑘 u

for all 𝑗1 P J3𝑘K. Then tp𝐴1,𝑗, 𝐵1,𝑗qu𝑡𝑗“1Ytp𝐴
2,𝑗1 , 𝐵2,𝑗1qu

J3𝑘K
𝑗1“1 is a biclique cover for 𝐺𝑐

𝒯 ,

where

𝐴1,𝑗
“

!

𝜏 P 𝑉
ˇ

ˇ

ˇ
r𝜏{𝑘s P 𝐴1,𝑗

)

, 𝐵1,𝑗
“

!

𝜏 P 𝑉
ˇ

ˇ

ˇ
r𝜏{𝑘s P 𝐵̃1,𝑗

)

,

for each 𝑗 P J𝑡K.

In particular, if tℎ𝑖u
r𝑁{𝑘s´1
𝑖“1 Ď t0, 1urlog2pr𝑁{𝑘s´1qs is a Gray code where ℎ0 def

“ ℎ1 and

ℎr𝑁{𝑘s def
“ ℎr𝑁{𝑘s´1, then a biclique cover of 𝐺𝑐

𝒯 of depth rlog2pr𝑁{𝑘s´ 1qs` 3𝑘 is given

by tp𝐴1,𝑗, 𝐵1,𝑗qu
rlog2pr𝑁{𝑘s´1
𝑗“1 Y tp𝐴2,𝑗1 , 𝐵2,𝑗1qu

J3𝑘K
𝑗1“1, where

𝐴1,𝑗
“

!

𝜏 P 𝑉 : ℎ
r𝜏{𝑘s´1
𝑗 “ ℎ

r𝜏{𝑘s

𝑗 “ 0
)

, 𝐵1,𝑗
“

!

𝜏 P 𝑉 : ℎ
r𝜏{𝑘s´1
𝑗 “ ℎ

r𝜏{𝑘s

𝑗 “ 1
)

for all 𝑗 P Jrlog2pr𝑁{𝑘s´ 1qsK.

Proof. Take 𝐺1 def
“ pJ𝑁{𝑘K, 𝐸1q as the conflict graph for SOS2(𝑁{𝑘), 𝐺2 def

“ pJ0, 𝑘 ´

1K,Hq as the empty graph on 𝑘 nodes, and 𝐺3 def
“

´

𝑉,
Ť3𝑘

𝑗1“1𝐴
2,𝑗1 ˚𝐵2,𝑗1

¯

. Let 𝐺̂ be the

subgraph of 𝐺𝑐
𝒯 from Lemma 7, which is isomorphic to 𝐺1ˆ𝐺2 through the bijection

𝑔 : J𝑁{𝑘Kˆ J0, 𝑘´ 1K Ñ 𝑉 with 𝑔p𝑚, 𝑟q “ 𝑘𝑚` 𝑟. Then we have that 𝐺𝑐
𝒯 “ 𝐺̂Y𝐺3,

after applying Lemma 7 and using the fact that the edges of 𝐺3 contain the edges of

𝐺𝑐
𝒯 not included in 𝐺̂. The result then follows from Lemma 4, Lemma 5, Lemma 7,

and Corollary 5.

We note that, when 𝑘 “ Oplogp𝑁qq, this biclique cover yields a binary MIP formu-

lation that is asymptotically tight (with respect to the number of binary variables)
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1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

Figure 2-9: Visualizations of the biclique cover from the proof of Theorem 7 for
SOS3p26q. Each row corresponds to some level 𝑗, and the sets 𝐴𝑗 and 𝐵𝑗 are the blue
squares and green diamonds, respectively. The first three rows correspond the the
“first stage” of the biclique cover tp𝐴1,𝑗, 𝐵1,𝑗qu3𝑗“1, and the second nine correspond to
the “second stage” tp𝐴2,𝑗, 𝐵2,𝑗qu9𝑗“1.
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with our lower bound of rlog2p𝑁 ´ 𝑘 ` 1qs from Proposition 1. We can also show

an absolute lower bound of depth 𝑘 for any biclique cover for SOS𝑘. This implies

that when 𝑘 “ 𝜔plogp𝑁qq, although the formulation from Theorem 7 is not tight

with respect to the lower bound from Proposition 1, it is asymptotically the smallest

possible formulation in the pairwise IB framework.

Proposition 8. Any biclique cover for the conflict graph of 𝐺𝑐
𝒯 of the SOS𝑘p𝑁q

constraint with 𝒯 ” 𝒯 SOS
𝑁,𝑘 must have depth at least mint𝑘,𝑁 ´ 𝑘u.

Proof. Define 𝛾 def
“ mint𝑘,𝑁´𝑘u and consider any possible biclique cover tp𝐴𝑗, 𝐵𝑗qu𝑡𝑗“1

for the conflict graph 𝐺𝑐
𝒯 “ p𝑉, 𝐸̄q. The biclique cover must separate the edges

tp𝜏, 𝜏 ` 𝑘qu𝛾𝜏“1. Consider a level 𝑗 of the biclique cover that contains edge t𝜏, 𝜏 ` 𝑘u

for some 𝜏 P J𝛾K; w.l.o.g., 𝜏 P 𝐴𝑗 and 𝜏 ` 𝑘 P 𝐵𝑗. Consider the possibility that the

same level 𝑗 separates another such edge in the set, e.g. p𝜏 1, 𝜏 1 ` 𝑘q for 𝜏 1 P J𝛾K,

where w.l.o.g. 𝜏 ă 𝜏 1. That would imply that either 𝜏 1 P 𝐴𝑗 or 𝜏 1 P 𝐵𝑗. In the

case that 𝜏 1 P 𝐴𝑗, we have that 𝐸̄𝑗 contains the edge t𝜏 1, 𝜏 ` 𝑘u. However, since

|p𝜏 ` 𝑘q ´ 𝜏 1| “ 𝜏 ` 𝑘 ´ 𝜏 1 ă 𝜏 ` 𝑘 ´ 𝜏 “ 𝑘, this implies that the biclique cover

separates a feasible edge, a contradiction. In the case where 𝜏 1 P 𝐵𝑗, we have that

𝐸̄𝑗 contains the edge t𝜏, 𝜏 1u, and as 𝜏 1 ´ 𝜏 ă 𝑘 ď 𝛾 from the definition of our set

of edges, a similar argument holds. Therefore, each edge tt𝜏, 𝜏 ` 𝑘uu𝛾𝜏“1 must be

uniquely contained in some level of the biclique cover, giving the result.

Furthermore, when 𝑘 “ t𝑁{2u, this proposition gives a lower bound on the depth

of a biclique cover that is asymptotically tight with the upper bound of 𝑁 from

Proposition 6. In other words, in this particular regime, we have that the SOS𝑘

constraint admits a pairwise IB-based formulation, but only one that is relatively

large (Ωp|𝒯 |q “ Ωp|𝑉 |q binary variables and constraints).
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Chapter 3

Building formulations geometrically:

Embeddings.

In the previous chapter, we explored the strengths and limitations of a combinatorial

approach for building MIP formulations. In this chapter, we will investigate a geomet-

ric approach to the same task. Our approach will allow us to readily study general

integer MIP formulations, and we present a generic MIP formulation construction

technique that is geometric in nature. We will see that, in terms of formulation size,

there are relatively limited gains to be had from general integer (as opposed to bi-

nary) MIP formulations. However, our new approach will allow to build small, strong

MIP formulations for univariate piecewise linear functions with desirable branching

behavior in such a way that is (to the best of our knowledge) only attainable with

general integer variables. In the following chapter, we will study these new formula-

tions computationally and see that they improve on the state-of-the-art logarithmic

formulation of Vielma et al. [133, 135].

3.1 The embedding approach

We will construct formulations for disjunctive sets 𝐷 “
Ť𝑑

𝑖“1 𝑃
𝑖 through what is

known as the embedding approach [131]. We assign each alternative 𝑃 𝑖 a unique code

ℎ𝑖 P Z𝑟. We call such a collection of distinct vectors 𝐻 “ pℎ𝑖q𝑑𝑖“1 an encoding. Given
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the family of polyhedra 𝒫 “ p𝑃 𝑖q𝑑𝑖“1 and the encoding 𝐻, we construct the embedding

of 𝐷 in a higher-dimensional space as

Emp𝒫 , 𝐻q
def
“

𝑑
ď

𝑖“1

p𝑃 𝑖
ˆ tℎ𝑖

uq.

This object is useful as projecting out the integer variables gives us the original

disjunctive set: Proj𝑥pEmp𝒫 , 𝐻qq “ 𝐷. Moreover, if the encoding satisfies a natural

geometric condition, then its convex hull 𝑄p𝒫 , 𝐻q
def
“ ConvpEmp𝒫 , 𝐻qq is the LP

relaxation of a non-extended ideal formulation for 𝐷.

Definition 9. A set 𝐻 Ă R𝑟 is:

• in convex position if extpConvp𝐻qq “ 𝐻.

• hole-free if Convp𝐻q X Z𝑟 “ 𝐻.

Proposition 9. Take a family of bounded polyhedron 𝒫 “ p𝑃 𝑖q𝑑𝑖“1. If 𝐻 “ pℎ𝑖q𝑑𝑖“1 is

a hole-free encoding in convex position, then t p𝑥, 𝑧q P 𝑄p𝒫 , 𝐻q | 𝑧 P Z𝑟 u is an ideal

formulation for
Ť𝑑

𝑖“1 𝑃
𝑖.

Proof. The validity of the formulation will follow from Corollary 8 to come. The ideal

property follows from the definition of the embedding object, as

extpConvpEmp𝒫 , 𝐻qqq Ď Emp𝒫 , 𝐻q Ă R𝑛
ˆ Z𝑟.

We refer to the resulting formulation, given by the LP relaxation 𝑄p𝒫 , 𝐻q, as

the embedding formulation for the particular choice of 𝒫 and 𝐻. The condition of

Proposition 9 is sufficient, but not necessary, as we will investigate further in this

thesis.

An immediate useful corollary of this result is that any binary encoding 𝐻 Ď

t0, 1u𝑟 will lead to a valid binary MIP formulation.
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Corollary 7. Take a family of bounded polyhedron 𝒫 “ p𝑃 𝑖q𝑑𝑖“1. If 𝐻 “ pℎ𝑖q𝑑𝑖“1 Ď

t0, 1u𝑟 is a binary encoding, then t p𝑥, 𝑧q P 𝑄p𝒫 , 𝐻q | 𝑧 P t0, 1u𝑟 u is an ideal formu-

lation for
Ť𝑑

𝑖“1 𝑃
𝑖. Moreover, we must necessarily have 𝑟 ě rlog2p𝑑qs.

Proof. The first follows from Proposition 9 as t0, 1u𝑟 is hole-free and in convex posi-

tion, and so any subset will be as well. The second follows as 𝐻 must be comprised

of 𝑑 distinct point from the definition of an encoding.

The embedding approach is universal in the sense that any bounded ideal formula-

tion is equivalent to an embedding formulation (potentially after projecting out auxil-

iary continuous variables), as the following result shows. Given 𝑅, define Slicep𝑅; 𝑧q
def
“

t 𝑥 P R𝑛 | D𝑤 s.t. p𝑥,𝑤, 𝑧q P 𝑅 u and 𝑍p𝑅q
def
“ t 𝑧 P Z𝑟 | D𝑥,𝑤 s.t. p𝑥,𝑤, 𝑧q P 𝑅 u.

Proposition 10. Take a polyhedra 𝑅 Ď R𝑛`𝑝`𝑟 such that t p𝑥,𝑤, 𝑧q P 𝑅 | 𝑧 P Z𝑟 u is

an ideal formulation for 𝐷 Ă R𝑛. Then 𝑅̃ “ Projp𝑥,𝑧qp𝑅q is also an ideal formulation

for 𝐷. Moreover, if 𝑍p𝑅q is finite, then 𝑅̃ “ 𝑄p𝒫 , 𝐻q for some encoding 𝐻 “ pℎ𝑖q𝑑𝑖“1

comprising of an ordering of 𝑍p𝑅q, along with the family 𝒫 “ pSlicep𝑅;ℎ𝑖qq𝑑𝑖“1.

Inspired by Proposition 10, we make the following simplifying assumption for the

remainder.

Assumption 3. Given an LP relaxation 𝑅, there are only finitely many feasible

integer points: |𝑍p𝑅q| ă 8.

We note that this assumption is not without loss of generality: there exists set 𝐷

for which the only MIP formulations that exist require an infinite number of feasible

integer points (as a trivial example, take the set 𝐷 “ Z). However, this will be

sufficient for the case we consider in this thesis: when 𝐷 is the finite union of bounded

polyhedra.

3.2 How many integer variables do we need?

At this point we pause ask a simple question: How small can we make 𝑟, the number

of integer variables in our formulation? It is well-known that the number of integer
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variables tends to have a substantial impact on the performance of a MIP formula-

tion, as in the worst case the search tree will need to enumerate a number of nodes

exponential in 𝑟. The formulations we have seen up to this point have had 𝑟 at least

logarithmic in the number of alternatives 𝑑 (i.e. 𝑟 ě rlog2p𝑑qs). Indeed, we have seen

in Proposition 1 that this lower bound must hold for any binary MIP formulation for

a combinatorial disjunctive constraint, and in Corollary 7 that this bound holds for

binary embedding formulations as well. However, we will see in this section that if we

allow ourselves to use general integer MIP formulations, the situation can sometimes

be substantially different.

To start, we see that if we select the representation for our disjunctive set (namely,

the sets 𝒫) in an degenerate way, then it may not be meaningful to seek lower bounds

on formulation size through our embedding approach. We illustrate with a simple

example.

Example 3. Take the family of intervals 𝒫 “ p𝑃 𝑖 “ r𝑖´1, 𝑖s Ă Rq𝑑𝑖“1. Recall that the

definition of an embedding requires us to select an encoding 𝐻 “ pℎ𝑖q𝑑𝑖“1 Ď Z𝑟 with

distinct elements ℎ𝑖. If we attempt to construct a binary MIP embedding formulation,

then 𝐻 Ď t0, 1u𝑑, and we must necessarily have 𝑟 ě rlog2p𝑑qs to satisfy the distinctness

condition. Even if we allow ourselves to use general integer variables, we still must

have 𝑟 ě 1. However, we can observe that
Ť𝑑

𝑖“1 𝑃
𝑖 “ r0, 𝑑s is itself an interval, and

so the set is convex and we can construct an LP formulation for the constraint (that

is, we do not need any integer variables).

In Example 3, our choice of the family of sets 𝒫 was redundant in the following

sense.

Definition 10. A family 𝒫 “ p𝑃 𝑖q𝑑𝑖“1 is redundant if there exists some family 𝒫 “

p𝑃 𝑖q𝑑
1

𝑖“1 where
Ť𝑑

𝑖“1 𝑃
𝑖 “

Ť𝑑1

𝑖“1 𝑃
𝑖 and either 1) 𝑑1 ă 𝑑, or 2) 𝑃 𝑖 Ď 𝑃 𝑖 for each

𝑖 P J𝑑K, and there exists some 𝑖 P J𝑑K where this inclusion is strict. It is irredundant

otherwise.

Although redundancy is an annoyance when trying to produce lower bounds on

𝑟, there are situations where redundancy actually helps. For example, there exist
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situations where a redundant representation can yield ideal formulations with strictly

fewer inequality constraints than any possible irredundant representation (an example

with bivariate grid triangulations appeared in a preprint version of [66]).

Proposition 11. Take a family of sets 𝒫 “ p𝑃 𝑖q𝑑𝑖“1, 𝐷 “
Ť𝑑

𝑖“1 𝑃
𝑖, and an encoding

𝐻 “ pℎ𝑖q𝑑𝑖“1 Ă R𝑟. Take a polyhedron 𝑅 Ď R𝑛`𝑝`𝑟. Then the following statements

are true.

• 𝐷 “
Ť𝑑

𝑖“1 SlicepEmp𝒫 , 𝐻q;ℎ𝑖q.

• If 𝐻 is hole-free, and

Slicep𝑅;ℎ𝑖
q “ 𝑃 𝑖

@𝑖 P J𝑑K, (3.1)

then t p𝑥,𝑤, 𝑧q P 𝑅 | 𝑧 P Z𝑟 u is a formulation for 𝐷. Furthermore, if 𝒫 is irre-

dundant, then this relationship is an equivalency.

• If 𝐻 is not hole-free, then t p𝑥,𝑤, 𝑧q P 𝑅 | 𝑧 P Z𝑟 u is a valid formulation for 𝐷

only if for each 𝑧 P 𝑍p𝑅qz𝐻,

Slicep𝑅; 𝑧q Ď 𝐷.

Proof. The first result is immediate from the definition of the embedding. The second

follows as the hole-free property implies that 𝐻 “ 𝑍p𝑅q, and so

Proj𝑥p𝑅 X pR𝑛`𝑝
ˆ Z𝑟

qq “
ď

𝑧P𝑍p𝑅q

Slicep𝑅; 𝑧q

“

𝑑
ď

𝑖“1

Slicep𝑅;ℎ𝑖
q

“

𝑑
ď

𝑖“1

𝑃 𝑖
” 𝐷.

The equivalency portion follows as from validity of the formulation given by 𝑅. That

is, 𝑃 𝑖 Ď Slicep𝑅;ℎ𝑖q, and if it is the case that this inclusion holds strictly, this implies
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that 𝒫 “ pSlicep𝑅;ℎ𝑖qq
𝑑
𝑖“1 is a strictly dominating representation, contradicting the

irredundancy of 𝒫 . The third follows similarly, as if 𝑅 yields a valid formulation, we

must have

Proj𝑥p𝑅 X pR𝑛`𝑝
ˆ Z𝑟

qq “
ď

𝑧P𝑍p𝑅q

Slicep𝑅; 𝑧q

“

˜

𝑑
ď

𝑖“1

Slicep𝑅;ℎ𝑖
q

¸

Y

¨

˝

ď

𝑧P𝑍p𝑅qz𝐻

Slicep𝑅; 𝑧q

˛

‚

Ď

𝑑
ď

𝑖“1

𝑃 𝑖
” 𝐷.

The second statement above gives us a simple sufficient statement to verify if an

embedding formulation will be valid. Note that it differs from Proposition 10 as it

does not require that 𝐻 is in convex position. In addition, the third statement above

implies that our representation 𝒫 is redundant. Therefore, we will make the following

assumption for the remainder of the chapter (though in Chapter 5 we will consider

the implications if we relax this assumption).

Assumption 4. We assume that any encoding 𝐻 is hole-free.

It is true that when 𝐻 Ď t0, 1u𝑟 is a binary encoding, the slice condition (3.1)

is satisfied for the embedding formulation, given by the LP relaxation 𝑅 ” 𝑄p𝒫 , 𝐻q

(this will follow immediately from Theorem 8 to come). However, if we consider

general integer encodings 𝐻, some care needs to be taken to ensure that the slice

condition (3.1) is indeed satisfied, as the following example illustrates.

Example 4. Consider the sets 𝑃 1 “ r0, 1s, 𝑃 2 “ r2, 3s, and 𝑃 3 “ r4, 5s, along with

the two ordered families 𝒫 “ p𝑃 1, 𝑃 2, 𝑃 3q and 𝒫 “ p𝑃 2, 𝑃 1, 𝑃 3q. First, for any

binary encoding 𝐻 Ď t0, 1u𝑟 with 𝑟 ě 2, the corresponding relaxations 𝑄p𝒫 , 𝐻q and

𝑄p𝒫 , 𝐻q satisfy condition (3.1) and yield valid binary MIP formulations. Moreover,

any binary MIP formulation for either Emp𝒫 , 𝐻q or Emp𝒫 , 𝐻q will require at least

two integer variables. However, if we take 𝐻 “ p1, 2, 3q, then 𝑄p𝒫 , 𝐻q yields a valid
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Figure 3-1: Two embeddings with the encoding 𝐻 “ p1, 2, 3q and different orders of
the sets as (Left) 𝒫 “ pr0, 1s, r2, 3s, r4, 5sq and (Right) 𝒫 “ pr2, 3s, r0, 1s, r4, 5sq. The
ordering 𝒫 satisfies (3.1); the ordering 𝒫 does not, as can be seen from the slice at
ℎ “ 2.

MIP formulation with only one general integer variable. On the other hand, 𝑄p𝒫 , 𝐻q

does not satisfy condition (3.1), and indeed does not yield a valid MIP formulation.

See Figure 3-1.

For more complex examples, in Figures 3-2 and 3-3 we embed two irredundant

disjunctive constraints using different general integer embeddings with strictly fewer

than rlog2p𝑑qs integer variables. In Figure 3-2, we take the union of 8 non-overlapping

intervals on the real line. When we embed the sets using a contiguous subset of the

integers (𝐻 “ p𝑘q8𝑘“1 Ď Z), the slice condition (3.1) is satisfied, and so 𝑄p𝒫 , 𝐻q gives

a valid MIP formulation. This is a valid formulation with only one integer variable,

strictly less than the rlog2p8qs “ 3 lower bound for a binary encoding. Moreover, it

is possible to generalize this construction to an arbitrary number of sets 𝑑 that can

be formulated using the simple one-dimensional encoding 𝐻 “ p𝑘q𝑑𝑖“1 Ă Z.

In Figure 3-3, we consider a more complex disjunctive set of 𝑑 “ 16 points or

intervals on the real line, embedded with a two-dimensional encoding. This gives a

valid MIP formulation for the disjunctive set with 2 integer variables, as opposed to

the log2p16q “ 4 needed for a binary encoding.
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𝑃 1

𝑃 2

𝑃 3

𝑃 4

𝑃 5

𝑃 6

𝑃 7

𝑃 8

𝑥

𝑧

𝑃 1 𝑃 2 𝑃 3 𝑃 4 𝑃 5 𝑃 6 𝑃 7 𝑃 8

1 50

Figure 3-2: A family 𝒫 “ p𝑃 𝑖 Ă Rq8𝑖“1 for which the one-dimensional encoding
𝐻 “ p𝑘q8𝑘“1 Ă Z is such that 𝑄p𝒫 , 𝐻q is a valid MIP formulation for

Ť8
𝑖“1 𝑃

𝑖. (Top)
A depiction of the embedding Emp𝒫 , 𝐻q and its convex hull 𝑄p𝒫 , 𝐻q. (Bottom)
The disjunctive set

Ť8
𝑖“1 𝑃

𝑖 on the real line.
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𝑃 1 𝑃 2

𝑃 3 𝑃 4

𝑃 5 𝑃 6

𝑃 7 𝑃 8

𝑃 9 𝑃 10

𝑃 11

𝑃 12 𝑃 13

𝑃 14

𝑃 15

𝑃 16

0

10

5
𝑦1

𝑦2

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7 𝑃8 𝑃9 𝑃10 𝑃11 𝑃12 𝑃13 𝑃14 𝑃15 𝑃16

0 24

Figure 3-3: A family 𝒫 “ p𝑃 𝑖 Ă Rq16𝑖“1, along with an encoding 𝐻 “ pℎ𝑖q16𝑖“1 Ď Z2 of
dimension 2. (Top) A depiction of 𝐻, the associated set 𝑃 𝑖 with each code ℎ𝑖, and
the convex hull Convp𝐻q of the codes. (Bottom) The disjunctive set

Ť16
𝑖“1 𝑃

𝑖 on the
real line.
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3.2.1 A geometric characterization of when embeddings yield

valid formulations

Example 4 and Figures 3-2 and 3-3 illustrate that it is possible to construct general

integer MIP formulations for disjunctive sets with strictly fewer than rlog2p𝑑qs integer

variables, provided that the slices of the formulation are “well-behaved.” At this point,

we are prepared to present a geometric characterization of exactly when this is the

case.

Theorem 8. Take some irredundant family of bounded polyhedra 𝒫 “ p𝑃 𝑖q𝑑𝑖“1 and

a hole-free encoding 𝐻 “ pℎ𝑖q𝑑𝑖“1 Ă R𝑟. Then 𝐹 “ t p𝑥, 𝑧q P 𝑄p𝒫 , 𝐻q | 𝑧 P Z𝑟 u is a

valid formulation for
Ť𝑑

𝑖“1 𝑃
𝑖 if and only if for each 𝑖 P J𝑑K, and for all 𝜆 P ∆𝑑 such

that ℎ𝑖 “
ř𝑑

𝑗“1 𝜆𝑗ℎ
𝑗, it is the case that 𝑃 𝑖 Ě

ř𝑑
𝑗“1 𝜆𝑗𝑃

𝑗.

Proof. To show the “only if” direction, take any 𝑖 P J𝑑K and any 𝜆 P ∆𝑑 such that

ℎ𝑖 “
ř𝑑

𝑗“1 𝜆𝑗ℎ
𝑗. Then

𝑑
ÿ

𝑗“1

𝜆𝑗p𝑃
𝑗
ˆ tℎ𝑗

uq “

𝑑
ÿ

𝑗“1

p𝜆𝑗𝑃
𝑗
ˆ tℎ𝑖

uq

Ď 𝑄p𝒫 , 𝐻q X pR𝑛
ˆ tℎ𝑖

uq

“ 𝑃 𝑖
ˆ tℎ𝑖

u,

where the inclusion follows from the definition 𝑄p𝒫 , 𝐻q ” ConvpEmp𝒫 , 𝐻qq, and

the last equality follows from Proposition 11 and the slice condition (3.1). Taking

the projection of both sides onto the 𝑥 variables yields the set inclusion condition

𝑃 𝑖 Ě
ř𝑑

𝑗“1 𝜆𝑗𝑃
𝑗.

To show the “if” direction, by Proposition 11 it suffices to show that 𝑃 𝑖 “

Slicep𝑄p𝒫 , 𝐻q;ℎ𝑖q for each 𝑖 P J𝑑K. Take any such 𝑖 P J𝑑K. From the definition of

Emp𝒫 , 𝐻q and 𝑄p𝒫 , 𝐻q, we immediately have that 𝑃 𝑖 Ď Slicep𝑄p𝒫 , 𝐻q;ℎ𝑖q. To

show the reverse inclusion, consider some element 𝑥̂ P Slicep𝑄p𝒫 , 𝐻q;ℎ𝑖q. From

the definition of the slice, it follows that p𝑥̂, ℎ𝑖q P 𝑄p𝒫 , 𝐻q. Therefore, it is pos-

sible to express p𝑥̂, ℎ𝑖q as a convex combination of the points in Emp𝒫 , 𝐻q. Or,
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equivalently, there exists some 𝜆 P ∆𝑑 and some points 𝑥̃𝑗 P 𝑃 𝑗 for each 𝑗 P J𝑑K

such that p𝑥̂, ℎ𝑖q “
ř𝑑

𝑗“1 𝜆𝑗p𝑥̃
𝑗, ℎ𝑗q. However, from assumption we have that, since

ℎ𝑖 “
ř𝑑

𝑗“1 𝜆𝑗ℎ
𝑗, then

ř𝑑
𝑗“1 𝜆𝑗𝑥̃

𝑗 P
ř𝑑

𝑗“1 𝜆𝑗𝑃
𝑗 Ď 𝑃 𝑖, and so 𝑥̂ P 𝑃 𝑖, completing the

proof.

In particular, this characterization tells us that as long as an encoding is in convex

position, we do not have to worry about how we assign sets to each code, in the sense

that the resulting embedding formulation is valid.

Corollary 8. Take an encoding 𝐻 “ pℎ𝑖q𝑑𝑖“1 Ď Z𝑟. If 𝐻 is in convex position, then

𝑄p𝒫 , 𝐻q satisfies condition (3.1) for any family of sets 𝒫 “ p𝑃 𝑖q𝑑𝑖“1. Furthermore, if

𝐻 is hole-free and in convex position, then 𝑟 ě rlog2p𝑑qs necessarily.

Proof. The first follows from Theorem 8 as, if 𝐻 is in convex position, then for each

𝑖 P J𝑑K the only value 𝜆 P ∆𝑑 wherein ℎ𝑖 “
ř𝑑

𝑗“1 𝜆𝑗ℎ
𝑗 is 𝜆 “ e𝑖. The second follows

as Convp𝐻q has at most 2𝑟 extreme points [29, Proposition 3], implying that 𝐻 has

at most 𝑑 “ 2𝑟 elements.

3.2.2 Negative results for combinatorial disjunctive constraints

We can specialize this result for combinatorial disjunctive constraints. In particular,

we can prove a more general version of the negative result of Proposition 1, which

states that for combinatorial disjunctive constraints: 1) redundancy is simple to detect

and remove, and that 2) if the constraint is irredundant, it requires an encoding in

convex position that uses at least 𝑟 ě rlog2p𝑑qs integer variables. In other words, we

cannot hope to get lucky and produce MIP formulations for combinatorial disjunctive

constraints with very few integer variables, as we were able to in Example 4 and

Figures 3-2 and 3-3.

Proposition 12. Let 𝒯 “ p𝑇 𝑖 Ď 𝑉 q𝑑𝑖“1 be the family of sets defining a combinatorial

disjunctive constraint associated with CDCp𝒯 q.

• 𝒫p𝒯 q is redundant if and only if there is some t𝑖, 𝑗u P r𝑑s2 where 𝑇 𝑖 Ď 𝑇 𝑗.
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• If 𝒫 is irredundant and 𝐻 is hole-free, then 𝑄p𝒫p𝒯 q, 𝐻q is a valid formulation

for CDCp𝒯 q if and only if 𝐻 is in convex position. In particular, any MIP

formulation for CDCp𝒯 q must have at least rlog2p𝑑qs integer variables.

Proof. We begin by proving the first part, pertaining to redundancy. The “if” direc-

tion is immediate. For the “only if” direction, presume that 𝒫 is a redundant repre-

sentation, and 𝒫 “ p𝑃 𝑖q𝑑
1

𝑖“1 is an irredundant representation for the same constraint.

For each 𝜆 P CDCp𝒯 q “
Ť𝑑

𝑖“1 𝑃 p𝑇
𝑖q, we have that e𝑣 P 𝐷 for each 𝑣 P suppp𝜆q.

Therefore, we can presume w.l.o.g. that the sets in 𝒫 are chosen maximally, and so

therefore it is itself a combinatorial disjunctive constraint. That is, for each 𝑖 P J𝑑1K,

there exists some 𝑇 𝑖 Ď 𝑉 such that 𝑃 𝑖 “ 𝑃 p𝑇 𝑖q.

As 𝒫 and 𝒫 represent the same constraint, and 𝒫 is irredundant, for each 𝑖 P J𝑑1K

there must exist some 𝑗𝑖 P J𝑑K such that 𝑇 𝑖 “ 𝑇 𝑗𝑖 . Furthermore, each element in the

set 𝐼 “ t𝑗𝑖u
𝑑1

𝑖“1 Ĺ J𝑑K is distinct, else 𝒫 is redundant. Therefore, since 𝑑1 ă 𝑑, there

must be some element 𝑘 P J𝑑Kz𝐼. As
Ť𝑑1

𝑖“1 𝑃 p𝑇
𝑖q “

Ť𝑑1

𝑖“1 𝑃 p𝑇
𝑗𝑖q “

Ť𝑑
𝑖“1 𝑃 p𝑇

𝑖q, and

𝑘 R 𝐼, it follows that 𝑃 p𝑇 𝑘q Ď
Ť

𝑖P𝐼 𝑃 p𝑇
𝑗𝑖q. Consider the point 𝜆 “ 1

|𝑇𝑘|

ř

𝑣P𝑇𝑘 e𝑣. As

𝜆 P
Ť

𝑖P𝐼 𝑃 p𝑇
𝑗𝑖q, it follows that there is some ℓ P 𝐼 such that 𝜆 P 𝑃 p𝑇 ℓq. This in turn

implies that e𝑣 P 𝑃 p𝑇 ℓq for each 𝑣 P 𝑇 𝑘. This means that 𝑇 𝑘 Ď 𝑇 ℓ, completing the

proof.

Now we prove the second part. The “if” direction follows directly from Corollary 8.

For the “only if” direction, presume for contradiction that 𝐻 is not in convex position,

yet 𝐹 is a valid formulation for 𝐷. In other words, there exists a code (w.l.o.g. ℎ1)

where ℎ1 “
ř𝑑

𝑖“1 𝜆𝑖ℎ
𝑖 for some 𝜆 P ∆𝑉 where 𝜆1 “ 0 and there exist at least two

fractional components of 𝜆; w.l.o.g., 0 ă 𝜆2, 𝜆3 ă 1. From Theorem 8, we have that

𝑃 p𝑇 1q Ě
ř𝑑

𝑖“2 𝜆𝑖𝑃 p𝑇
𝑖q. Consider some 𝑣 P 𝑇 2. Since e𝑣 P 𝑃 p𝑇 2q and each point on

the standard simplex is nonnegative, we must have that 𝜆̃ P 𝑃 p𝑇 1q for some 𝜆̃ P ∆𝑉

with 𝜆̃𝑣 ě 𝜆𝑣 ą 0. Therefore, we must have 𝑣 P 𝑇 1. Repeating this for each 𝑣 P 𝑇 2,

we conclude that 𝑇 1 Ě 𝑇 2. However, this contradicts the irredundancy assumption,

and so we must have that 𝐻 is in convex position.
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3.3 A geometric construction for ideal formulations

of any combinatorial disjunctive constraint

Vielma [131] gives an explicit geometric description for 𝑄p𝒫p𝒯 SOS2
𝑑 q, 𝐻q, which gives

an embedding formulation for the SOS2 constraint for any binary encoding 𝐻. In

other words, this characterizes all non-extended ideal formulations for the SOS2 con-

straint. Motivated by the computational efficacy of the formulations you may con-

struct using that result (including a close relative of the LogIB formulation we intro-

duce in Chapter 3.4), we extend the characterization to any combinatorial disjunctive

constraint. This result provides an explicit geometric construction for 𝑄p𝒫p𝒯 q, 𝐻q

for any combinatorial disjunctive constraint given by the family 𝒯 , paired with any

encoding 𝐻 that is in convex position.

Theorem 9. Take the family of sets 𝒯 “ p𝑇 𝑖 Ď 𝑉 q𝑑𝑖“1. Let 𝐻 “ pℎ𝑖q𝑑𝑖“1 Ă R𝑟 be an

encoding in convex position. Furthermore, let Υ “ t t𝑖, 𝑗u P r𝑑s2 | 𝑇 𝑖 X 𝑇 𝑗 ‰ H u, and

presume that Υ is path connected in the sense that the associated graph 𝐺 “ pJ𝑑K,Υq

is connected. Take 𝐶 “ t𝑐𝑖,𝑗
def
“ ℎ𝑖 ´ ℎ𝑗ut𝑖,𝑗uPϒ, and ℒ “ spanp𝐶q. Define 𝑀p𝑏;ℒq def

“

t 𝑦 P ℒ | 𝑏 ¨ 𝑦 “ 0 u to be the hyperplane in the linear space ℒ induced by the direction

𝑏 ‰ 0𝑟. If t𝑏𝑖uΓ𝑖“1 Ă R𝑟zt0𝑟u is such that t𝑀p𝑏𝑖;ℒquΓ𝑖“1 is the set of linear hyperplanes

spanned by 𝐶 in ℒ, then p𝜆, 𝑧q P 𝑄p𝒫p𝒯 q, 𝐻q if and only if

ÿ

𝑣P𝑉

𝜆𝑣 min
𝑗:𝑣P𝑇 𝑗

t𝑏𝑖 ¨ ℎ𝑗
u ď 𝑏𝑖 ¨ 𝑧 ď

ÿ

𝑣P𝑉

𝜆𝑣 max
𝑗:𝑣P𝑇 𝑗

t𝑏𝑖 ¨ ℎ𝑗
u @𝑖 P JΓK (3.2a)

p𝜆, 𝑧q P ∆𝑉
ˆ affp𝐻q. (3.2b)

Proof. For notational simplicity, we will presume that 𝑉 “ J𝑛K for the proof. It is

straightforward to show the “only if” direction. Take 𝐵 “ extp𝑄p𝒫p𝒯 q, 𝐻qq as the set

of all extreme points. Note that, as we are working with a combinatorial disjunctive

constraint, each extreme point will take the form pe𝑤, ℎ𝑘q P 𝐵 for some 𝑤 P 𝑇 𝑘. This

shows that (3.2b) is trivially satisfied. Moreover, for each p𝜆̂, 𝑧q ” pe𝑤, ℎ𝑘q P 𝐵 and
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each 𝑖 P JΓK, we have that

ÿ

𝑣P𝑉

𝜆̂𝑣 min
𝑗:𝑣P𝑇 𝑗

t𝑏𝑖 ¨ ℎ𝑗
u “ min

𝑗:𝑤P𝑇 𝑗
t𝑏𝑖 ¨ ℎ𝑗

u ď 𝑏𝑖 ¨ ℎ𝑘
” 𝑏𝑖 ¨ 𝑧,

where the inequality follows as 𝑤 P 𝑇 𝑘. The other side of the inequality follows

analogously, showing that each constraint in (3.2a) is also satisfied. Therefore, for

the remainder we will focus on the “if” direction.

We start for the “if” direction by showing that ℒ “ affp𝐻q ´ ℎ1. For notational

convenience, presume throughout that if we write an inclusion of the form t𝑖, 𝑗u P Υ, it

is implied that 𝑖 ă 𝑗, and so there is a well-defined ordering for the elements. To show

that spanp𝐶q Ď affp𝐻q ´ ℎ1, take some 𝑧 P spanp𝐶q, and so there exist multipliers

𝛾𝑖,𝑗 such that 𝑧 “
ř

t𝑖,𝑗uPϒ 𝛾𝑖,𝑗pℎ
𝑖 ´ ℎ𝑗q “

ř𝑑
𝑖“1 𝛾𝑖ℎ

𝑖, where 𝛼𝑖 “
ř

𝑗:t𝑖,𝑗uPϒ 𝛾𝑖,𝑗 ´
ř

𝑘:t𝑘,𝑖uPϒ 𝛾𝑘,𝑖. Then 𝑧 “ p𝛼1 ` 1qℎ1 ` p
ř𝑑

𝑖“2 𝛼𝑖ℎ
𝑖q ´ ℎ1, i.e. 𝑧 P affp𝐻q ´ ℎ1, as

p𝛼1 ` 1q `
ř𝑑

𝑖“2 𝛼𝑖 “ 1 `
ř𝑑

𝑖“1

´

ř

𝑗:t𝑖,𝑗uPϒ 𝛾𝑖,𝑗 ´
ř

𝑘:t𝑘,𝑖uPϒ 𝛾𝑘,𝑖

¯

“ 1 ` 0, and so they

form affine multipliers. To show that spanp𝐶q Ě affp𝐻q´ℎ1, take some 𝑧 P affp𝐻q´ℎ1,

and so there exists multipliers 𝜇𝑖 such that 𝑧 “ p
ř𝑑

𝑖“1 𝜇𝑖ℎ
𝑖q ´ ℎ1 and

ř𝑑
𝑖“1 𝜇𝑖 “ 1.

As 𝐺 is connected, there exists some closed path t𝑡1 ” 1, 𝑡2, . . . , 𝑡𝑟, 𝑡𝑟`1 ” 1u on 𝐺

that traverses each vertex. Take 𝛼𝑖
def
“

𝜇𝑖

# of times path traverses 𝑖
for each 𝑖 P J𝑑K. Then

𝑧 “
ř𝑟

𝑘“1pℎ
𝑡𝑘 ´ ℎ𝑡𝑘`1q

ř𝑟
ℓ“1 𝛼𝑡ℓ “

ř𝑟
𝑘“1 𝑐

𝑡𝑘,𝑡𝑘`1
ř𝑟

ℓ“1 𝛼𝑡ℓ (using
ř𝑑

𝑖“1 𝜇𝑖 “ 1 to show

that the ℓ “ 𝑟 term in the sum produces the desired ´ℎ1 term), and so therefore

𝑧 P spanp𝐶q, as each t𝑡𝑘, 𝑡𝑘`1u P Υ. This shows the result. Additionally, we note that

the choice of ℎ1 to subtract from affp𝐻q was arbitrary.

Now, let 𝐹 be a facet of 𝑄p𝒫p𝒯 q, 𝐻q. By possibly adding or subtracting multiples

of
ř𝑛

𝑖“1 𝜆𝑖 “ 1 and the equations defining affp𝐻q, we may assume w.l.o.g. that 𝐹 is in-

duced by 𝑎̃¨𝜆 ď 𝑏̃¨𝑦 for some p𝑎̃, 𝑏̃q P R𝑛`𝑟. We have that 𝐹 is supported by some strict

nonempty subset 𝐵̃ Ĺ 𝐵. Take Υ̃ “

!

t𝑖, 𝑗u P Υ
ˇ

ˇ

ˇ
D𝑣 P J𝑛K s.t. pe𝑣, ℎ𝑖q, pe𝑣, ℎ𝑗q P 𝐵̃

)

and 𝐶 “
!

𝑐𝑖,𝑗 P 𝐶
ˇ

ˇ

ˇ
t𝑖, 𝑗u P Υ̃

)

. In particular, we see that 𝑏̃ ¨𝑐𝑖,𝑗 “ 0 for each 𝑐𝑖,𝑗 P 𝐶,

as if t𝑖, 𝑗u P Υ̃, this implies that there is some 𝑣 P J𝑛K whereby 𝑎̃ ¨ e𝑣 “ 𝑏̃ ¨ ℎ𝑖 “ 𝑏̃ ¨ ℎ𝑗.
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Case 1: dimp𝐶q “ dimp𝐶q In this case, we show that 𝐹 corresponds to a variable

bound on a single component of 𝜆. As 𝐶 Ď 𝐶 and dimp𝐶q “ dimp𝐶q, we conclude

that spanp𝐶q “ spanp𝐶q ” ℒ. Then 𝑏̃ P ℒK, as 𝑏̃ K 𝐶. Furthermore, ℒ is the linear

space parallel to affp𝐻q. Therefore, we can w.l.o.g. presume that 𝑏̃ “ 0𝑟, as (3.2b)

constrains 𝑧 P affp𝐻q.

We observe that 𝑎̃ ‰ 0𝑛, as otherwise this would correspond to the vacuous

inequality 0 ď 0, which is not a proper face. We now show that 𝑎̃ has exactly one

nonzero element. Assume for contradiction that this is not the case, and w.l.o.g.

𝑎̃1, 𝑎̃2 ă 0 (any strictly positive components will not yield a valid inequality for 𝐵).

This would imply that pe1, ℎ𝑗q P 𝐵‹ for each 𝑗 P J𝑑K such that 1 P 𝑇 𝑗, and similarly

that pe2, ℎ𝑗q P 𝐵‹ for each 𝑗 P J𝑑K wherein 2 P 𝑇 𝑗. However, we could then perform

the simple tilting 𝑎̃2 Ð 0 to construct a distinct face with strictly larger support,

as now pe2, ℎ𝑗q is supported by the corresponding face for each 𝑗 such that 2 P 𝑇 𝑗.

Furthermore, as this new constraint does not support pe1, ℎ𝑗q for each 𝑗 such that

1 P 𝑇 𝑗, the new face is proper, and thus contradicts the original face 𝐹 being a facet.

Therefore, we can normalize the coefficients to 𝑎̃ “ ´e1, giving a variable bound

constraint on a component of 𝜆 which appears in the restriction 𝜆 P ∆𝑛 in (3.2b).

Case 2: dimp𝐶q “ dimp𝐶q ´ 1 The fact that 𝑏 K 𝐶, along with the dimensionality

of 𝐶, implies that 𝑀p𝑏̃;ℒq “ spanp𝐶q is a hyperplane in ℒ. This means we can

assume w.l.o.g. that 𝑏̃ “ 𝑠𝑏𝑖 for some 𝑖 P JΓK and 𝑠 P t´1,`1u. We then compute for

each 𝑣 P J𝑛K that either 𝑎𝑣 “ min𝑗:𝑣P𝑇 𝑗t𝑏𝑖 ¨ ℎ𝑗u if 𝑠 “ `1, or 𝑎𝑣 “ ´max𝑗:𝑣P𝑇 𝑗t𝑏𝑖 ¨ ℎ𝑗u

if 𝑠 “ ´1.

Case 3: dimp𝐶q ă dimp𝐶q ´ 1 We will show that this case cannot occur if 𝐹 is a

general inequality facet. A geometric depiction of the argument is shown in Figure 3-4.

Observe that if, w.l.o.g. e1 R Proj𝜆p𝐵̃q, then 𝑎̃¨𝜆 ď 𝑏̃¨𝑧 is either equal to, or dominated

by, the variable bound 𝜆1 ě 0. Therefore, we assume that Proj𝜆p𝐵̃q “ te
𝑖u𝑛𝑖“1 for the

remainder.

Presume for contradiction that it is indeed the case that 𝐹 is a facet and dimp𝐶q ă
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p𝑎, 𝑏q

𝐾

𝐿 𝑅

p𝑎, 𝑏q

𝐾

𝐿 𝑅

p𝑎̃, 𝑏̃q

Figure 3-4: (Left) As dimp𝐿q “ 1, we cannot tilt the inequality (given by coefficients
p𝑎, 𝑏q) to make one of the inequalities defining 𝐾 binding, while maintaining feasibility
with respect to 𝐿 and 𝑅. (Right) This tilting is possible when dimp𝐿q ą 1.

dimp𝐶q ´ 1. As 𝐹 is a proper face, we know that there is some point in 𝐵 not

supporting 𝐹 , w.l.o.g. pe1, ℎ1q P 𝐵z𝐵̃. We will take all the remaining extreme points

as 𝐵‹ “ 𝐵zp𝐵̃ Y tpe1, ℎ1quq.

First, we show that 𝐵‹ ‰ H. If this where not the case, then 𝐵̃ “ 𝐵ztpe1, ℎ1qu

necessarily, and this implies that 𝑖 “ 1 for each t𝑖, 𝑗u P ΥzΥ̃ (recall that 𝑖 ă 𝑗 nota-

tionally). Furthermore, 𝑇 1X𝑇 𝑗 Ď t1u for each 𝑗 P J2, 𝑑K, else 𝑐1,𝑣 P 𝐶 and t1, 𝑣u P Υ̃.

Therefore, as Υ is connected by assumption, Υ̃ is “nearly connected” in the sense that

𝐺 “

´

J2, 𝑑K,
!

t𝑖, 𝑗u P Υ̃
ˇ

ˇ

ˇ
𝑖 ‰ 1, 𝑗 ‰ 1

)¯

is a connected graph. By the same argu-

ment as in the beginning of the proof, we conclude that spanp𝐶q Ě affptℎ𝑖u𝑑𝑖“2q ´ ℎ2.

However, this would imply that dimp𝐶q ě dimpaffptℎ𝑖u𝑑𝑖“2q´ℎ2q ě dimpaffptℎ𝑖u𝑑𝑖“1q´

ℎ2q´1 “ dimpℒq´1 “ dimp𝐶q´1, a contradiction of our dimensionality assumption.

Therefore, we conclude that 𝐵‹ ‰ H.

We now define the cone

𝐾 “
 

p𝑎, 𝑏q P R𝑛
ˆ ℒ

ˇ

ˇ 𝑎 ¨ e𝑣 ď 𝑏 ¨ ℎ𝑗
@pe𝑣, ℎ𝑗

q P 𝐵‹
(

and the linear space

𝐿 “
!

p𝑎, 𝑏q P R𝑛
ˆ ℒ

ˇ

ˇ

ˇ
𝑎 ¨ e𝑣 “ 𝑏 ¨ ℎ𝑗

@pe𝑣, ℎ𝑗
q P 𝐵̃

)

.
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Furthermore, we see that the inequalities defining 𝐾 cannot be implied equalities.

Therefore, as p𝑎̃, 𝑏̃q P 𝐾 and this point strictly satisfies each inequality of 𝐾 indexed

by 𝐵‹, we conclude that 𝐾 is full-dimensional in R𝑛 ˆ ℒ, and that p𝑎̃, 𝑏̃q P intp𝐾q.

Next, we show that dimp𝐿q ą 1. To show this, we start by instead studying 𝐿1 “
!

𝑏 P ℒ
ˇ

ˇ

ˇ
𝑏 ¨ 𝑐 “ 0 @𝑐 P 𝐶

)

. We can readily observe that 𝐿1 “ Proj𝑏p𝐿q. Furthermore,

as Proj𝑎p𝐵̃q “ te
𝑖u𝑛𝑖“1 from the argument at the beginning of the case, we conclude

that the set t 𝑎 | p𝑎, 𝑏q P 𝐿 u is a singleton. In other words, the values for 𝑎 are

completely determined by the values for 𝑏 in 𝐿. From this, we conclude that dimp𝐿q “

dimp𝐿1q. From the definition of 𝐿1, we see that 𝐿1 and spanp𝐶q form an orthogonal

decomposition of ℒ. Therefore, dimpℒq “ dimp𝐿1q`dimp𝐶q. Recalling that dimpℒq “

dimp𝐶q, and that we are assuming that dimp𝐶q ă dimp𝐶q´1, we have that dimp𝐿q “

dimp𝐿1q “ dimpℒq ´ dimp𝐶q “ dimp𝐶q ´ dimp𝐶q ą 1, giving the result.

We now show that 𝐾 X 𝐿 is pointed. To see this, presume for contradiction that

there exists a nonzero p𝑎̂, 𝑏̂q such that p𝑎̂, 𝑏̂q, p´𝑎̂,´𝑏̂q P 𝐾 X 𝐿. However, this would

imply that 𝑎̂ ¨ e𝑣 “ 𝑏̂ ¨ ℎ𝑗 for all pe𝑣, ℎ𝑗q P 𝐵̃ Y𝐵‹. Because 𝐵‹ ‰ H, this implies that

𝑎̂ ¨ 𝜆 ď 𝑏̂ ¨ 𝑧 is a face strictly containing the facet 𝐹 , and so must be a non-proper

face (i.e. it is additionally supported by pe1, ℎ1q and hence by every point in 𝐵).

However, this would imply that 𝑏̂ ¨ 𝑐 “ 0 for all 𝑐 P 𝐶, and as ℒ “ spanp𝐶q, this would

necessitate that 𝑏̂ P ℒK. As 𝑏̂ P ℒ from the definition of 𝐾, it follows that 𝑏̂ “ 0𝑟.

However, this would imply that 𝑎̂ ¨ 𝜆 “ 0 is valid for 𝐵, which cannot be the case

unless 𝑎̂ “ 0𝑛, a contradiction. Therefore, 𝐾 X 𝐿 is pointed.

As dimp𝐿q ą 1, we can take some two-dimensional linear subspace 𝐿2 Ď 𝐿 such

that p𝑎̃, 𝑏̃q P 𝐿2. As p𝑎̃, 𝑏̃q P 𝐿 X intp𝐾q, it follows that p𝑎̃, 𝑏̃q P 𝐿2 X intp𝐾q as

well. Similarly, as 𝐾 X 𝐿 is pointed, it follows that 𝐾2 “ 𝐿2 X 𝐾 is pointed as

well. Furthermore, as 𝐾 is full-dimensional in R𝑛 ˆ ℒ, 𝐾2 is full-dimensional in

𝐿2 Ă R𝑛 ˆℒ (i.e. 2-dimensional).Therefore, a minimal description for it includes the

equalities that define 𝐿2, along with exactly two nonempty-face-inducing inequality

constraints from the definition of 𝐾. Add the single strict inequality 𝐾̂2 “ 𝐾2 X

t p𝑎, 𝑏q P R𝑛 ˆ ℒ | 𝑎 ¨ e1 ă 𝑏 ¨ ℎ1 u. As 𝑎̃ ¨ e1 ă 𝑏̃ ¨ ℎ1 and p𝑎̃, 𝑏̃q P 𝐾2, it follows that

𝐾̂2 is nonempty and also 2-dimensional, and can be described using only the linear
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equations defining 𝐿2, the strict inequality 𝑎 ¨ e1 ă 𝑏 ¨ ℎ1, and at least one (and

potentially two) of the inequalities previously used to describe 𝐾2. Select one of the

defining nonempty-face-inducing inequalities given by 𝑎 ¨ e𝑣 ď 𝑏 ¨ ℎ𝑗, where pe𝑣, ℎ𝑗q P

𝐵‹.

Now construct the restriction 𝑆 “
!

p𝑎, 𝑏q P 𝐾̂2
ˇ

ˇ

ˇ
𝑎 ¨ e𝑣 “ 𝑏 ¨ ℎ𝑗

)

. As 𝑎 ¨ e𝑣 ď 𝑏 ¨ℎ𝑗

induces a non-empty face on the cone 𝐾̂2, 𝑆 is nonempty. Furthermore, we see

that any p𝑎̂, 𝑏̂q P 𝑆 will correspond to a valid inequality 𝑎̂ ¨ 𝜆 ď 𝑏̂ ¨ 𝑧 for 𝐵 with

strictly greater support than our original face 𝑎̃ ¨ 𝜆 ď 𝑏̃ ¨ 𝑧. In particular, we see that

pe𝑣, ℎ𝑗q P 𝐵‹, i.e. 𝑎̃ ¨ e𝑣 ă 𝑏̃ ¨ ℎ𝑗, but by construction 𝑎̂ ¨ e𝑣 “ 𝑏̂ ¨ ℎ𝑗. Additionally, since

𝑎̂ ¨ e1 ă 𝑏̂ ¨ ℎ1, the corresponding face is proper, which implies that 𝐹 cannot be a

facet, a contradiction.

We observe three things about Theorem 9. First, it is straightforward to adapt

it to the case where 𝒯 is not path connected by adding a “dummy” element 𝑣 to the

ground set 𝑉 and to each set 𝑇 P 𝒯 (i.e. 𝑇 Ñ 𝑇 Y t𝑣u). The family is now path

connected, and the resulting formulation can be modified for the original constraint

by imposing 𝜆𝑣 ď 0.

Second, we observe that this geometric characterization is most useful from a prac-

tical perspective when computing the set of all hyperplanes spanned by the directions

𝐶 is easy, and there resulting hyperplanes are not too numerous. This means that

we can easy apply the theorem to produce a small, strong MIP formulation for our

combinatorial disjunctive constraint.

Third, the description (3.2) may be overly conservative in that some of the con-

straints (3.2a) may not be facet-inducing, and therefore are not necessary for a valid

formulation. This is not the case for the result of Vielma [130], where they are able to

prove that for the SOS2 constraint, the inequalities (3.2a) are all facet-inducing. This

means the fact that 𝐶 is spanned by a small number of hyperplanes is a sufficient,

but not necessary, condition for the corresponding embedding formulation admitting

a small representation.

112



3.4 Novel MIP formulations for univariate piecewise

linear functions

Recall the negative result of Proposition 12, which tells us that we cannot hope

produce a MIP formulation for the SOS2 constraint that is smaller or stronger than the

ideal, logarithmically-sized LogIB formulation of Vielma and Nemhauser. However, we

can still hope to apply Theorem 9 to build MIP formulations for univariate piecewise

linear functions that are superior to LogIB in other ways.

We start by reconstructing LogIB a second way, using Theorem 9. We will work

with an encoding 𝐻Log
𝑑

def
“ pℎ𝑖q𝑑𝑖“1 Ď t0, 1urlog2p𝑑qs known as Gray codes [120], where

adjacent codes differ in exactly one component (i.e. ||ℎ𝑖 ´ ℎ𝑖´1||1 “ 1 for all 𝑖 P

J𝑑´ 1K). For the remainder, we will work with a particular Gray code known as

the binary reflected Gray code (BRGC), for which we can give a simple recursive

definition.

Definition 11. For 𝑠 P N, take the matrices 𝐾𝑠 as defined recursively via the sequence

𝐾1 “ p0, 1q and

𝐾𝑠`1
“

¨

˝

𝐾𝑠 0𝑟

revp𝐾𝑠q 11

˛

‚,

where revp𝐴q reverses the rows of the matrix 𝐴.

The BRGC with 𝑑 elements is 𝐻Log
𝑑

def
“ pℎ𝑖q𝑑𝑖“1 Ď t0, 1u

𝑟 for 𝑟 “ rlog2p𝑑qs, where ℎ𝑖

is the 𝑖-th row of the matrix 𝐾𝑟.

Vielma used the BRGC, along with his geometric characterization for the SOS2

constraint, to produce a logarithmically-sized ideal formulation for the SOS2 con-

straint [131], which we will refer to as the logarithmic embedding (Log) formulation.

Corollary 9 (Corollary 3 [131]). Take the SOS2(𝑑`1) constraint, given by the family

of sets 𝒯 SOS2
𝑑 “ pt𝑖, 𝑖 ` 1uq𝑑𝑖“1. Take 𝐻Log

𝑑 “ pℎ𝑖q𝑑𝑖“1 Ď t0, 1u𝑟 as the BRGC, where

𝑟 “ rlog2p𝑑qs. For notational convenience, take ℎ0 ” ℎ1 and ℎ𝑑`1 ” ℎ𝑑. Then the
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following is an ideal formulation for the SOS2 constraint:

𝑑`1
ÿ

𝑣“1

mintℎ𝑗´1
𝑖 , ℎ𝑗

𝑖u𝜆𝑣 ď 𝑧𝑖 ď
𝑑`1
ÿ

𝑣“1

maxtℎ𝑗´1
𝑖 , ℎ𝑗

𝑖u𝜆𝑣 @𝑖 P J𝑟K (3.3a)

p𝜆, 𝑧q P ∆𝑑`1
ˆ t0, 1u𝑟. (3.3b)

It is constructive to compare this against the LogIB formulation given in Chap-

ter 2.6. As first observed by Muldoon [107], this Log formulation coincides with

the LogIB formulation when 𝑑 is a power-of-two, but this is not necessarily the case

otherwise.

Example 5. Consider the SOS2(4) constraint on 𝑑 “ 3 segments. The Log formu-

lation is

𝜆3 ` 𝜆4 ď 𝑧1, 𝜆2 ` 𝜆3 ` 𝜆4ě 𝑧1 (3.4a)

𝜆4 ď 𝑧2, 𝜆3 ` 𝜆4 ě 𝑧2 (3.4b)

p𝜆, 𝑧q P ∆4
ˆ t0, 1u2. (3.4c)

In contrast, the LogIB formulation is

𝜆3 ď 𝑧1, 𝜆2 ` 𝜆3 ` 𝜆4ě 𝑧1 (3.5a)

𝜆4 ď 𝑧2, 𝜆3 ` 𝜆4 ě 𝑧2 (3.5b)

p𝜆, 𝑧q P ∆4
ˆ t0, 1u2 (3.5c)

Note that we have applied a linear transformation to the formulation using the equa-

tion
ř4

𝑣“1 𝜆𝑣 “ 1 to present the LogIB formulation in a way analogous to (3.4). In this

form, we can observe that the first inequality in (3.4a) differs from the first inequality

in (3.5a).

Regardless, both Log and LogIB are are both ideal and require the same number

of variables and constraints.

We will now construct two new encodings by transforming the BRGC. For the
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remainder of the subsection, assume w.l.o.g. that 𝑑 is a power-of-two. Otherwise,

construct the codes for 𝑑 “ 2rlog2p𝑑qs and take the first 𝑑 elements of the encoding.

Take 𝐾𝑟 P t0, 1u𝑑ˆ𝑟 as the matrix whose rows give the BRGC for 𝑑 “ 2𝑟 elements,

as in Definition 11. Our first new encoding is produced by transforming 𝐾𝑟 to 𝐶𝑟 P

Z𝑑ˆ𝑟, where 𝐶𝑟
𝑖,𝑘 “

ř𝑖
𝑗“2

ˇ

ˇ𝐾𝑟
𝑗,𝑘 ´𝐾𝑟

𝑗´1,𝑘

ˇ

ˇ for each 𝑖 P J𝑑K and 𝑘 P J𝑟K. In words, 𝐶𝑟
𝑖,𝑘

is the number of times the sequence p𝐾𝑟
1,𝑘, . . . , 𝐾

𝑟
𝑖,𝑘q changes value, and is monotonic

nondecreasing in 𝑖. Our second encoding will be 𝑍𝑟 P t0, 1u𝑑ˆ𝑟, where 𝑍𝑟
𝑘 “ Ap𝐶𝑟

𝑘q

for the linear map A : R𝑟 Ñ R𝑟 given by Ap𝑧q𝑘 “ 𝑧𝑘 ´
ř𝑟

ℓ“𝑘`1 𝑧ℓ for each component

𝑘 P J𝑟K.

Finally, given the matrices 𝐶𝑟 and 𝑍𝑟, we can define the new encodings as 𝐻ZZI def
“

pℎ𝑖q𝑑𝑖“1 (resp. 𝐻ZZB def
“ pℎ𝑖q𝑑𝑖“1), where ℎ𝑖 is the 𝑖-th row of 𝐶𝑟 (resp. 𝑍𝑟). We show the

encodings for 𝑟 “ 3 in Figure 3-5. Furthermore, we can offer a recursive definition of

the matrices 𝐶𝑟 and 𝑍𝑟, analogously to Definition 11, and show that both encodings

are hole-free and in convex position.

𝑧1ℎ1

ℎ8

𝑧3

𝑧2

𝑧1ℎ1

ℎ8

𝑧3

𝑧2

𝑧2ℎ1

ℎ8

𝑧1

𝑧3

Figure 3-5: Depiction of (Left) 𝐻Log
8 , (Center) 𝐻ZZI

8 , and (Right) 𝐻ZZB
8 . The first

row of each is marked with a dot, and the subsequent rows follow along the arrows.
The axis orientation is different for 𝐻ZZB

8 for visual clarity.

Proposition 13. For each 𝑟 P N, 𝐻ZZI
2𝑟 and 𝐻ZZB

2𝑟 are both hole-free and in convex

position. Additionally, 𝐶1 “ 𝑍1 “ p0, 1q𝑇 , and:

𝐶𝑟`1
“

¨

˝

𝐶𝑟 0𝑟

𝐶𝑟 ` 1𝑟 b 𝐶𝑟
𝑟 1𝑟

˛

‚

𝑍𝑟`1
“

¨

˝

𝑍𝑟 0𝑟

𝑍𝑟 1𝑟

˛

‚,
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where 𝑢b 𝑣 “ 𝑢𝑣𝑇 P R𝑚ˆ𝑛 for any 𝑢 P R𝑚 and 𝑣 P R𝑛, and revp𝐴q reverses the rows

of the matrix 𝐴.

Proof. First, we observe that as 𝑍𝑟 P t0, 1u𝑑ˆ𝑟, 𝐻ZZB
2𝑟 Ď t0, 1u𝑟 is hole-free and in

convex position. Second, we note that A is an invertible unimodular linear map (i.e.

Ap𝑤q P Z𝑟 if and only if 𝑤 P Z𝑟), which in turn implies that 𝐻ZZI
2𝑟 is hole-free and in

convex position.

Applying Theorem 9 with the new encodings gives two new formulations for SOS2.

Proposition 14. Take 𝐻ZZI
𝑑 “ pℎ𝑖q𝑑𝑖“1, along with ℎ0 ” ℎ1 and ℎ𝑑`1 ” ℎ𝑑 for nota-

tional simplicity. Let 𝑟 “ rlog2p𝑑qs. Then two ideal formulations for the SOS2(𝑑` 1)

constraint are

𝑑`1
ÿ

𝑣“1

ℎ𝑣´1
𝑖 𝜆𝑣 ď 𝑧𝑖 ď

𝑑`1
ÿ

𝑣“1

ℎ𝑣
𝑖𝜆𝑣 @𝑖 P J𝑟K (3.6a)

p𝜆, 𝑧q P ∆𝑑`1
ˆ Z𝑟 (3.6b)

and

𝑑`1
ÿ

𝑣“1

ℎ𝑣´1
𝑖 𝜆𝑣 ď 𝑧𝑖 `

𝑟
ÿ

𝑘“𝑖`1

2𝑘´𝑖´1𝑧𝑘 ď
𝑑`1
ÿ

𝑣“1

ℎ𝑣
𝑖𝜆𝑣 @𝑖 P J𝑟K (3.7a)

p𝜆, 𝑧q P ∆𝑑`1
ˆ t0, 1u𝑟. (3.7b)

Proof. Formulations (3.6) and (3.7) correspond to encodings 𝐻ZZI
𝑑 and 𝐻ZZB

𝑑 , respec-

tively. The result for (3.6) is direct from Theorem 9, as 𝐶 “ tℎ𝑖`1´ℎ𝑖u
𝑑´1
𝑖“1 “ te

𝑖u𝑟𝑖“1,

where e𝑖 is the canonical unit vector with support on component 𝑖. Therefore, the

spanning hyperplanes of 𝐶 are exactly those given by the normal directions te𝑖u𝑟𝑖“1.

The result for (3.7) follows by applying the invertible linear map 𝒜´1 to the 𝑧 com-

ponents of (3.6), and noting that it takes the form A´1p𝑧q𝑖 “ 𝑧𝑖`
ř𝑟

𝑘“𝑖`1 2𝑘´𝑖´1𝑧𝑘 for

each 𝑖 P J𝑟K.

We dub (3.7) the binary zig-zag (ZZB) formulation for SOS2, as its associated

binary encoding 𝐻ZZB
𝑑 “zig-zags” through the interior of the unit hypercube (See Fig-
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ure 3-5). We will refer to formulation (3.6) as the general integer zig-zag (ZZI) for-

mulation because of its use of general integer encoding 𝐻ZZI
𝑑 Ă Z𝑟. We emphasize

that ZZI and ZZB are logarithmically-sized in 𝑑 and ideal: the same size and strength

as the LogIB formulation. Additionally, we will see in Chapter 4.1.2 that the new

zig-zag formulations enjoy substantially better branching behavior than the existing

Log/LogIB formulations.

3.5 Small MIP formulations for the annulus

We can also return to the annulus constraint of Chapter 1.3.7 to apply Theorem 9

using the three encodings introduced in the previous section. We start by presenting

an ideal MIP formulation for the annulus that uses log2p𝑑q integer variables and

2 log2p𝑑q general inequality constraints for the case where 𝑑 is a power-of-two.

Proposition 15. Fix 𝑑 “ 2𝑟 for some 𝑟 P N. Take the BRGC 𝐻Log
𝑑 “ pℎ𝑖q𝑑𝑖“1 Ď

t0, 1u𝑟, along with ℎ𝑑`1 ” ℎ1 for notational simplicity. Then p𝜆, 𝑧q P 𝑄p𝒫p𝒯 ann
𝑑 q, 𝐻Log

𝑑 q

if and only if

𝑑
ÿ

𝑖“1

mintℎ𝑖
𝑘, ℎ

𝑖`1
𝑘 up𝜆2𝑖´1 ` 𝜆2𝑖q ď 𝑧𝑘 @𝑘 P J𝑟K (3.8a)

𝑑
ÿ

𝑖“1

maxtℎ𝑖
𝑘, ℎ

𝑖`1
𝑘 up𝜆2𝑖´1 ` 𝜆2𝑖q ě 𝑧𝑘 @𝑘 P J𝑟K (3.8b)

p𝜆, 𝑧q P ∆2𝑑
ˆ R𝑟. (3.8c)

Proof. The result follows from Theorem 9 after observing that Υ “ t𝑖, 𝑖`1u𝑑´1𝑖“1Yt1, 𝑑u

and therefore that 𝐶 “ t˘e𝑘u𝑟𝑘“1, as the binary reflected Gray code is cyclic (ℎ𝑑´ℎ1 “

e1).

Observe that this formulation looks extremely similar to formulation (3.3) for the

SOS2 constraint: this is a result of the fortuitous fact that ℎ𝑑 ´ ℎ1 “ e1, which

holds for the BRGC when 𝑑 is a power-of-two, but not necessarily for other choices

of Gray codes or other values of 𝑑. Indeed, it is also not the case when using the
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general integer zig-zag encoding. However, we are still able to use the general integer

zig-zag encoding to produce an ideal MIP formulation with log2p𝑑q integer variables

and Oplog2
p𝑑qq general inequality constraints.

Proposition 16. Fix 𝑑 “ 2𝑟 for some 𝑟 P N. Select the general integer zig-zag

encoding 𝐻ZZI
𝑑 “ pℎ𝑖q𝑑𝑖“1, where we use ℎ𝑑`1 ” ℎ1 for notational convenience. Then

p𝜆, 𝑧q P 𝑄p𝒫p𝒯 ann
𝑑 q, 𝐻ZZI

𝑑 q if and only if

𝑑
ÿ

𝑖“1

mintℎ𝑖
𝑘, ℎ

𝑖`1
𝑘 up𝜆2𝑖´1 ` 𝜆2𝑖q ď 𝑧𝑘 @𝑘 P J𝑟K (3.9a)

𝑑
ÿ

𝑖“1

maxtℎ𝑖
𝑘, ℎ

𝑖`1
𝑘 up𝜆2𝑖´1 ` 𝜆2𝑖q ě 𝑧𝑘 @𝑘 P J𝑟K (3.9b)

𝑑
ÿ

𝑖“1

min

"

ℎ𝑖
𝑘

2ℓ
´

ℎ𝑖
ℓ

2𝑘
,
ℎ𝑖`1
𝑘

2ℓ
´

ℎ𝑖`1
ℓ

2𝑘

*

p𝜆2𝑖´1 ` 𝜆2𝑖q ď
𝑧𝑘
2ℓ
´

𝑧ℓ
2𝑘

@t𝑘, ℓu P r𝑟s2 (3.9c)

𝑑
ÿ

𝑖“1

max

"

ℎ𝑖
𝑘

2ℓ
´

ℎ𝑖
ℓ

2𝑘
,
ℎ𝑖`1
𝑘

2ℓ
´

ℎ𝑖`1
ℓ

2𝑘

*

p𝜆2𝑖´1 ` 𝜆2𝑖q ě
𝑧𝑘
2ℓ
´

𝑧ℓ
2𝑘

@t𝑘, ℓu P r𝑟s2 (3.9d)

p𝜆, 𝑧q P ∆2𝑑
ˆ R𝑟. (3.9e)

Proof. The result follows from Theorem 9. As Υ “ t𝑖, 𝑖 ` 1u𝑑´1𝑖“1 Y t1, 𝑑u, it follows

that 𝐶 “ te𝑘u𝑟𝑘“1 Y t𝑤 ” p2
𝑟´1, 2𝑟´2, . . . , 20qu. We have that 𝐵 “ te𝑘u𝑟𝑘“1 induce all

hyperplanes spanned by the vectors 𝐶zt𝑤u “ te𝑘u𝑟𝑘“1. Now consider each hyperplane

spanned by 𝐶 “ te𝑘u𝑘P𝐼 Y t𝑤u Ă 𝐶, where 𝐼 Ď 𝐼. As |𝐶| “ 𝑟 ` 1 and dimp𝐶q “ 𝑟,

we must have |𝐼| “ 𝑟 ´ 2, i.e. that there are distinct indices 𝑘, ℓ P J𝑟Kz𝐼 where

𝐼 Y t𝑘, ℓu “ J𝑟K. We may then compute that the corresponding hyperplane is given

by the normal direction 𝑏𝑘,ℓ “ 2´ℓe𝑘 ´ 2´𝑘eℓ. Therefore, we have that the set 𝐵 “

te𝑘u𝑟𝑘“1Yt𝑏
𝑘,ℓut𝑘,ℓuPr𝑟s2 suffices for the conditions of Theorem 9, giving the result.

We have stated this result only for the general integer zig-zag encoding, and only

for the case that 𝑑 is a power-of-two. However, an analogous result holds if we use

either of the BRGC or the binary zig-zag encoding instead, and also if 𝑑 is not a

power-of-two. In particular, we can recover three distinct ideal MIP formulations

with rlog2p𝑑qs integer variables and Oplog2
p𝑑qq general inequality constraints.

118



We close by investigating the branching behavior of different embedding formula-

tions for the annulus. Consider an instance of the annulus with 𝑑 “ 8 quadrilaterals

with 𝑆 “ 2 and 𝑆 “ 3. Both formulation (3.8) and (3.9) are ideal, and so they project

onto the convex hull of the feasible region; see Figure 3-6. However, we can compare

the two formulations after branching: that is, after we change variable bounds on

some of the integer variables, as is done in a branch-and-bound algorithm.

Figure 3-6: Annulus with 𝑑 “ 8 quadrilateral pieces (crosshatched), along with LP
relaxation of ideal formulation (solid light gray).

For example, in Figure 3-7 we see what happens to formulation (3.8) after branch-

ing on 𝑧1: either down (𝑧1 ď 0) or up (𝑧1 ě 1). Both branches produce LP relaxations

for the subproblems that are the convex hulls of the quadrilaterals feasible for each

(i.e. hereditary sharpness). However, we can see qualitatively that the subproblems

after branching have LP relaxations which are not substantially different from the

original LP relaxation.

We can contrast this with the behavior of formulation (3.9), as depicted in Fig-

ure 3-8, which nearly induces the incremental branching property. Now there are 8

possible branching decisions for 𝑧1, and the corresponding subproblem LP relaxations

differ greatly between the different choices. We also observe that the LP relaxations

for the subproblems are not always the tightest possible, as sometimes they are strictly

larger than the convex hull of the quadrilaterals feasible for the given subproblem.
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Figure 3-7: LP relaxation of formulation (3.8) (shaded) after (Left) down-branching
𝑧1 ď 0, and (Right) up-branching 𝑧1 ě 1. The quadrilaterals that are feasible for
each subproblem are crosshatched.

Finally, if we construct the embedding formulation analogous to (3.9) using the

binary zig-zag encoding 𝐻ZZB
8 , we see in Figure 3-9 that the resulting formulation

has extremely pathological branching behavior: both subproblems after branching

on 𝑧1 have LP relaxations that remain completely unchanged in 𝑥-space! In the

following section we will explore these concepts more, as this type of analysis of

branching behavior will allow us to explain why the ZZI formulation derived earlier

computationally outperforms other formulations of comparable size and strength.
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Figure 3-8: LP relaxation of formulation (3.9) (shaded) after (First row) down-
branching 𝑧1 ď 0 or up-branching 𝑧1 ě 1; (Second row) down-branching 𝑧1 ď 1 or
up-branching 𝑧1 ě 2; (Third row) down-branching 𝑧1 ď 2 or up-branching 𝑧1 ě 3;
or (Last row) down-branching 𝑧1 ď 3 or up-branching 𝑧1 ě 4. The quadrilaterals
that are feasible for each subproblem are crosshatched.
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Figure 3-9: LP relaxation of embedding formulation for the annulus using the binary
zig-zag encoding 𝐻ZZB

8 (shaded) after (Left) down-branching 𝑧1 ď 0, and (Right)
up-branching 𝑧1 ě 1. The quadrilaterals that are feasible for each subproblem are
crosshatched.
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Chapter 4

MIP formulations for nonconvex

piecewise linear functions.

In this chapter, we focus exclusively on MIP formulations for piecewise linear func-

tions. We will investigate in detail the computational properties of the new MIP

formulations we have derived in the previous chapters. We will also present com-

putational modeling tools we have developed that offer a high-level way to formu-

late piecewise linear functions, in the hopes of making the complex formulations of

this thesis more accessible. Afterwards, we turn our attention to high-dimensional

piecewise linear functions that arise in deep learning, and present a new strong MIP

formulation, along with valid inequalities for more complex structures. In particu-

lar, we will see the limits of the combinatorial disjunctive constraint approach in the

high-dimensional setting, suggesting the need for the development of new tools and

approaches in the future.

4.1 Univariate piecewise linear functions

We start this chapter by presenting extensive computational results comparing the

myriad different formulations for the SOS2 constraint and univariate piecewise linear

functions. We will see that our new zig-zag (ZZI and ZZB) formulations presented in

Proposition 14 can offer a substantial speed-up over the existing and high-performing
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LogIB formulation of Vielma and Nemhauser. In the following subsection, we provided

a explanation of this phenomena, and a motivation for the exotic choice of encodings

used to build the formulations. In particular, we will see how we were able to craft

encodings that result in formulations that maintain the size and strength of the LogIB

formulation, while repairing its degenerate branching behavior.

4.1.1 Univariate computational experiments

To evaluate the new ZZI and ZZB formulations against existing formulations for uni-

variate piecewise linear functions, we reproduce a variant of the computational ex-

periments of Vielma et al. [133], with the addition of the ZZB and ZZI formulations.

We compare against the LogIB, Log, MC, CC, and DLog formulations mentioned previ-

ously, as well as the incremental (Inc) formulation which we discuss in more detail

in Chapter 4.1.2, and the SOS2 native constraint branching (SOS2) implementation.

We evaluate our formulations on single commodity transportation problems of the

form

min
𝑥

ÿ

𝑖P𝑆

ÿ

𝑗P𝐷

𝑓𝑖,𝑗p𝑥𝑖,𝑗q

s.t.
ÿ

𝑖P𝑆

𝑥𝑖,𝑗 “ 𝑑𝑗 @𝑗 P 𝐷

ÿ

𝑗P𝐷

𝑥𝑖,𝑗 “ 𝑠𝑖 @𝑖 P 𝑆

𝑥𝑖,𝑗 ě 0 @𝑖 P 𝑆, 𝑗 P 𝐷,

where we match supply from nodes indexed by 𝑆 with demand from nodes in-

dexed by 𝐷, while minimizing the transportation costs given by the sum of con-

tinuous nondecreasing concave univariate piecewise linear functions 𝑓𝑖,𝑗 for each arc.

These instances are publicly available in the PiecewiseLinearOpt repository (https:

//github.com/joehuchette/PiecewiseLinearOpt.jl).

We perform a scaling analysis along two axes: the size of the network (i.e. the

cardinality of 𝑆 and 𝐷), and the number of segments for each piecewise linear function
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𝑓𝑖,𝑗. Regarding the first axis, we study both small networks (|𝑆| “ |𝐷| “ 10) and

large networks (|𝑆| “ |𝐷| “ 20). Along the second axis, we study families of instances

where each piecewise linear function appearing in the objective has 𝑑 P t6, 13, 28, 59u

segments.

Regarding this last choice, we note that although the Log/LogIB formulation offers

great computational performance (particularly for univariate functions with many

segments), it has also been observed that logarithmic formulations tend to suffer

from a significant performance degradation when the number of segments 𝑑 is not a

power-of-two [35, 107, 108, 135]. Additionally, the Log and LogIB formulations do not

coincide when 𝑑 is not a power-of-two, as observed in Example 5, offering us a chance

to compare the two.

We use CPLEX v12.7.0 with the JuMP algebraic modeling library [48, 92] in

the Julia programming language [21] for all computational trials, here and for the

remainder of this work. All such trials were performed on an Intel i7-3770 3.40GHz

Linux workstation with 32GB of RAM. For each trial, we allow the solver to run for

30 minutes to prove optimality before timing out.

Small networks

We start by studying the small network instances in Table 4.1. For each formulation

and each family (𝑑 P t6, 13, 28, 59u) of 100 instances, we report the average solve

time, standard deviation in solve time, and the counts of instances for which the

formulation was either the fastest (Win), or was unable to solve to optimality in 30

minutes or less (Fail).

We observe that the Inc formulation is superior for smaller instances. Addition-

ally, the Log and LogIB formulations are roughly equivalent on all families of instances.

We observe that the new ZZI and ZZB formulations are the best performers for larger

instances, and one of the two is the fastest formulation for every instance with 𝑑 “ 59.

Additionally, ZZI and ZZB both offer a roughly 2x speed-up in mean solve time over

Log and LogIB for most families of instances (𝑑 P t13, 28, 59u).

We repeat the same experiments with the Gurobi v7.0.2 solver, and report the
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𝑑 Metric MC CC SOS2 Inc DLog Log LogIB ZZB ZZI

6

Mean (s) 0.6 3.8 1.1 0.6 1.1 1.4 2.6 1.1 0.9
Std 0.3 4.1 1.5 0.3 1.0 1.2 2.4 0.9 0.5
Win 35 0 7 46 5 1 0 4 2
Fail 0 0 0 0 0 0 0 0 0

13

Mean (s) 3.0 71.2 4.5 1.7 4.6 4.4 4.2 2.4 2.6
Std 3.1 152.0 5.8 0.7 3.5 3.4 3.0 1.8 1.7
Win 11 0 9 47 11 0 0 15 7
Fail 0 0 0 0 0 0 0 0 0

28

Mean (s) 18.4 178.9 87.4 5.5 11.1 8.8 8.9 5.1 4.6
Std 26.0 359.3 309.3 4.4 8.1 5.6 5.4 3.7 2.7
Win 1 0 6 14 1 0 0 37 41
Fail 0 3 3 0 0 0 0 0 0

59

Mean (s) 348.7 541.0 664.3 17.1 19.1 16.3 16.0 9.8 9.3
Std 523.7 610.3 746.4 14.9 11.3 10.3 9.3 6.1 5.0
Win 0 0 0 0 0 0 0 41 59
Fail 7 13 26 0 0 0 0 0 0

Table 4.1: Computational results for univariate transportation problems on small
networks with non powers-of-two segments.

results in Table 4.2. Gurobi has a relatively superior implementation of native SOS2

branching that works very well for small and medium instances. However, it performs

very poorly on large instances (timing out after 30 minutes on 98 of 100 instances

with 𝑑 “ 59), and we again observe that the ZZI formulation offers a roughly 1.5-2x

speedup over the Log and LogIB formulations for these larger instances. Interestingly,

we observe that the LogIB formulation also runs 1.5-2x faster than the Log formulation

on medium and larger instances.

Large networks

In Table 4.3 we present computational results for the large network instances (we

repeat the experiments with Gurobi and report the results in Appendix D). Here we

observe a roughly 2-3x average speed-up on larger instances for our new formulations

over previous methods. Moreover, we highlight that the new formulations have lower

variability in solve time, and time out on fewer instances than the existing methods.

With 𝑑 “ 28, the SOS2 approach works very well for easier instances, winning on 11

of 100, though its variability is extremely high, timing out on 80 of 100 instances.
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𝑑 Metric MC CC SOS2 Inc DLog Log LogIB ZZB ZZI

6

Mean (s) 0.8 2.7 0.2 0.5 0.7 0.7 0.7 1.0 0.7
Std 0.4 3.4 0.2 0.2 0.8 0.7 0.8 0.8 0.6
Win 0 0 95 2 1 1 0 0 1
Fail 0 0 0 0 0 0 0 0 0

13

Mean (s) 4.2 13.4 0.9 1.9 4.1 5.2 2.1 2.5 2.7
Std 4.8 15.3 1.0 0.9 4.5 6.0 2.9 2.6 2.3
Win 0 0 90 4 0 0 1 2 3
Fail 0 0 0 0 0 0 0 0 0

28

Mean (s) 30.3 95.2 3.9 6.1 9.2 6.1 3.3 4.4 4.4
Std 43.0 261.3 8.1 5.2 8.7 10.2 2.7 4.6 3.7
Win 0 0 63 1 1 7 8 7 13
Fail 0 2 0 0 0 0 0 0 0

59

Mean (s) 265.5 372.3 1781.2 24.3 7.3 12.6 9.1 7.5 6.0
Std 409.5 530.0 134.7 23.1 6.7 12.5 9.3 7.2 5.3
Win 0 0 0 0 10 20 16 5 49
Fail 2 8 98 0 0 0 0 0 0

Table 4.2: Computational results with Gurobi for univariate transportation problems
on small networks with non powers-of-two segments.

𝑑 Metric MC CC SOS2 Inc DLog Log LogIB ZZB ZZI

28

Mean (s) 828.0 1769.3 1498.6 196.9 242.1 332.9 295.8 147.4 98.0
Std 714.3 211.5 646.9 206.8 282.2 430.4 387.9 228.2 144.4
Win 0 0 11 6 1 1 5 10 66
Fail 28 97 80 0 1 2 2 1 0

59

Mean (s) 1596.9 1800.0 1800.0 793.4 777.1 749.3 753.5 328.7 273.1
Std 475.7 - - 557.7 593.5 593.3 591.3 383.0 341.6
Win 0 0 0 2 0 1 1 29 67
Fail 82 100 100 11 15 16 17 2 2

Table 4.3: Computational results for univariate transportation problems on large
networks with non powers-of-two segments.

Metric MC CC SOS2 Inc DLog Log LogIB ZZB ZZI
Mean (s) 1663.4 1800.0 1800.0 710.6 752.4 793.1 796.0 319.3 261.4

Std 298.7 - - 529.9 555.0 570.9 554.4 392.7 316.7
Win 0 0 0 4 0 1 0 27 53
Fail 78 85 85 10 15 17 18 2 1

Margin - - - 207.0 - 5.6 - 320.1 348.9

Table 4.4: Difficult univariate transportation problems on large networks with non
powers-of-two segments.
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The existing Inc, DLog, Log, and LogIB formulations all perform roughly comparably

to each other.

In Table 4.4, we focus on those large network problems that are difficult (i.e. no

formulation is able to solve the instance in under 100 seconds) but still solvable (i.e.

one formulation solves the instance in under 30 minutes). We see that the new for-

mulations are the fastest on 80 of 85 such instances. Moreover, we report the average

margin: for those instances for which a given new (resp. existing) formulation is

fastest, what is the absolute difference in solve time between it and the fastest exist-

ing (resp. new) formulation? In this way, we can measure the absolute improvement

offered by our new formulation on an instance-by-instance basis. Here we see that the

new formulations offer a substantial improvement on these difficult instances, with

an absolute improvement of 5-6 minutes in average solve time over existing methods.

Finally, we highlight that there are 5 instances that our new formulations can solve

to optimality and for which all existing formulations time out in 30 minutes.

4.1.2 Branching behavior of MIP formulations

As observed by Vielma et al. [133], and corroborated by our computational experi-

ments, the LogIB formulation can offer a considerable computational advantage over

existing formulations, particularly for univariate piecewise linear functions with many

segments (i.e. large 𝑑). However, we have seen that the Log and LogIB formulations

are nearly strictly dominated by our new ZZI and ZZB formulations. Further, all four

formulations share the same size (logarithmic in 𝑑) and strength (ideal).

To explain the discrepancy, we start with the existing observation that variable

branching with Log can produce weaker dual bounds than other approaches (e.g.

[139]). We will investigate this further with the function given in Example 1.11 with

𝑑 “ 4 pieces.

The Log/LogIB formulation for our univariate piecewise linear function with 𝑑 “ 4
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pieces is

𝑥 “ 𝜆1 ` 2𝜆2 ` 3𝜆3 ` 4𝜆4 ` 5𝜆5 (4.1a)

𝑦 “ 4𝜆2 ` 7𝜆3 ` 9𝜆4 ` 10𝜆5 (4.1b)

𝜆3 ď 𝑧1 ď 𝜆2 ` 𝜆3 ` 𝜆4 (4.1c)

𝜆4 ` 𝜆5 ď 𝑧2 ď 𝜆3 ` 𝜆4 ` 𝜆5 (4.1d)

p𝜆, 𝑧q P ∆5
ˆ t0, 1u2. (4.1e)

The corresponding ZZI formulation is

𝑥 “ 𝜆1 ` 2𝜆2 ` 3𝜆3 ` 4𝜆4 ` 5𝜆5 (4.2a)

𝑦 “ 4𝜆2 ` 7𝜆3 ` 9𝜆4 ` 10𝜆5 (4.2b)

𝜆3 ` 𝜆4 ` 2𝜆5 ď 𝑧1 ď 𝜆2 ` 𝜆3 ` 2𝜆4 ` 2𝜆5 (4.2c)

𝜆4 ` 𝜆5 ď 𝑧2 ď 𝜆3 ` 𝜆4 ` 𝜆5 (4.2d)

p𝜆, 𝑧q P ∆5
ˆ Z2. (4.2e)

Finally, the incremental (Inc) formulation [38, 42, 111] is an ideal formulation for

univariate piecewise linear functions whose size scales linearly in 𝑑. For the piecewise

linear function (1.11), the formulation is

𝑥 “ 1` 𝛿1 ` 𝛿2 ` 𝛿3 ` 𝛿4 (4.3a)

𝑦 “ 4𝛿1 ` 3𝛿2 ` 2𝛿3 ` 𝛿4 (4.3b)

𝛿2 ď 𝑧1 ď 𝛿1 (4.3c)

𝛿3 ď 𝑧2 ď 𝛿2 (4.3d)

𝛿4 ď 𝑧3 ď 𝛿3 (4.3e)

𝛿5 ď 𝑧4 ď 𝛿4 (4.3f)

p𝛿, 𝑧q P r0, 1s5 ˆ t0, 1u4. (4.3g)

We note in passing that we can alternatively derive the Inc formulation (modulo an
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affine transformation of the variables) by the application of Theorem 9 using a “unary”

encoding [130, 139]. The Inc formulation is designed to induce the traditional SOS2

constraint branching [13].

We will now investigate the relative branching properties of the three formulations.

They are all ideal (and therefore sharp as well), and so their LP relaxation projected

onto p𝑥, 𝑦q-space is Convpgrp𝑓qq; see Figure 4.1.2. However, we will see that when 𝑓

is a concave function such as (1.11), Log/LogIB leads to relaxations after branching

that are qualitatively and quantitatively worse than the corresponding relaxations

after branching with the Inc or ZZI formulations.

𝑥

𝑧

Figure 4-1: The LP relaxation of an ideal formulation for (1.11) (e.g. Log/LogIB,
Inc, or ZZI) projected onto p𝑥, 𝑦q-space.

To quantitatively assess relaxation strength after branching, we consider two met-

rics. The first is the volume of the projection of the LP relaxation onto p𝑥, 𝑦q-space

(cf. [88] for a recent work using volume as a metric for formulation quality). The

second is the proportion of the domain where the LP relaxation after branching is

stronger than the LP relaxation without branching. More formally, Ω is the domain of

𝑓 in 𝑥-space and if 𝐹 and 𝐹 1 are the projection of the LP relaxations onto p𝑥, 𝑦q-space

before and after branching, respectively, then we report

1

VolpΩq
Vol

ˆ"

𝑥 P Ω

ˇ

ˇ

ˇ

ˇ

min
p𝑥,𝑦qP𝐹

𝑧 ă min
p𝑥,𝑦qP𝐹 1

𝑦

*˙

,

which we dub the strengthened proportion. We report these statistics for different
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branching choices for the three formulations in Table 4.5.

Statistic LP Inc 0 Ó Inc 1 Ò Log 0 Ó Log 1 Ò ZZI 0 Ó ZZI 1 Ò ZZI 1 Ó ZZI 2 Ò
Volume 6 0 2 5.5 0.5 0 3.5 3.5 0

Str. Prop. 0 1 1 0 1 1 0.5 0.5 1

Table 4.5: Metrics for each possible branching decision on 𝑧1 for Inc, Log, and ZZI
applied to (1.11). Notationally, 1 Ó means down-branching on the value 1 (i.e. 𝑧1 ď 1,
and similarly 2 Ò implies up-branching on the value 2 (i.e. 𝑧1 ě 2.

First, we turn to the Inc formulation as depicted in Figure 4-2. The Inc formula-

tion also enjoys the hereditary sharpness property. Additionally, the formulation has

incremental branching, which has a particularly natural interpretation for univariate

piecewise linear functions: after selecting a binary variable 𝑧𝑘 for branching (Inc has

𝑑 ´ 1 binary variables, so 𝑘 P J𝑑 ´ 1K), the only points p𝑥, 𝑦q P grp𝑓q feasible for the

down-branch (resp. up-branch) are those that lie on segments 1 to 𝑘 ´ 1 (resp. 𝑘 to

𝑑). Therefore, after branching down on 𝑧1 ď 0, we recover exactly one segment, while

when we branch up on 𝑧1 ě 1, we recover the convex hull of the remaining pieces,

which still shrinks the LP relaxation substantially due to their contiguous ordering.

The combination of ideal strength, hereditary sharpness, and incremental branch-

ing mean that the Inc formulation tends to perform very well for small and medium-

sized instances (as observed in Chapter 4.1.1), until the linear scaling in 𝑑 of the

formulation size starts to dominate in larger instances.

Next, we consider the Log/LogIB formulation, and refer the reader to Figure 4-3

for an illustration. Down-branching on 𝑧1 (i.e. imposing 𝑧1 ď 0) implies that 𝜆3 “ 0.

Up-branching on 𝑧1 (i.e. imposing 𝑧1 ě 1) implies that 𝜆1 “ 𝜆5 “ 0. The down

branch produces an LP relaxation that is weak and does not substantially change the

original LP relaxation before branching. The strengthened proportion is 0, and so

when minimizing 𝑓 , the dual bound will be the same after branching as for the original

LP relaxation (assuming both are feasible). Despite this poor branching behavior,

the Log/LogIB formulation is hereditarily sharp. However, we can see in Figure 4-3

that the problem is instead that the feasible segments for the down-branch problem

are non-contiguous (and so do not have incremental branching), leading to a large

convex relaxation. Therefore, it is reasonable to infer that the high-performance of
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𝑧

𝑥

𝑧

Figure 4-2: The LP relaxation of the Inc formulation (4.3) projected onto p𝑥, 𝑦q-
space, after (Top Left) down-branching 𝑧1 ď 0, (Top Right) up-branching 𝑧1 ě 1;
(Center Left) down-branching 𝑧2 ď 0, (Center Right) up-branching 𝑧2 ě 1;
(Bottom Left) down-branching 𝑧3 ď 0, and (Bottom Right) up-branching 𝑧3 ě 1.
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the Log and LogIB formulations is due to its strength and small size, in spite of its

poor branching behavior.

𝑥

𝑧

𝑥

𝑧

Figure 4-3: The Log formulation after (Left) down-branching 𝑧1 ď 0 and (Right)
up-branching 𝑧1 ě 1.

Finally, we turn to the ZZI formulation, which we recall is a general integer MIP

formulation. Therefore, we have four possibilities for branching on 𝑧1, depicted in

Figure 4-4. Branching 𝑧1 ď 0 implies 𝜆3 “ 𝜆4 “ 𝜆5 “ 0, while the opposite branch

𝑧1 ě 1 implies 𝜆1 ď 𝜆4 ` 𝜆5. The second branching choice is between 𝑧1 ď 1, which

implies 𝜆5 ď 𝜆1 ` 𝜆2, or 𝑧1 ě 2, which implies that 𝜆1 “ 𝜆2 “ 𝜆3 “ 0. We note

that after branching either 𝑧1 ď 0 or 𝑧1 ě 2, the relaxation is then exact, i.e. the

relaxation is equal to exactly one of the segments of the graph of 𝑓 . Furthermore,

when branching either 𝑧1 ď 1 or 𝑧1 ě 1, we deduce a general inequality on the 𝜆

variables that improves the strengthened proportion relative to Log. Furthermore,

the ZZI enjoys the incremental branching property. Therefore, the ZZI formulation is

both ideal and has incremental branching, but sacrifices hereditary sharpness in lieu

of a logarithmic (instead of linear) scaling of its size in 𝑑.

As we see qualitatively in Figures 4-3, 4-2, and 4-4, and quantitatively in Table 4.5,

the Inc formulation offers the best branching behavior of the three ideal formulations,

leading to its excellent performance for smaller instances observed in Chapter 4.1.1.

In contrast, the Log/LogIB has very poor branching, but its small size means that it

can still perform very well for larger instances, where the Inc formulation becomes

undesirably large. However, by carefully designing the general integer zig-zag encod-

133



𝑥

𝑧

𝑥

𝑧

𝑥

𝑧

𝑥

𝑧

Figure 4-4: The LP relaxation of the ZZI formulation (4.2) projected onto p𝑥, 𝑦q-
space, after (Top Center) down-branching 𝑧1 ď 0, (Bottom Center) up-branching
𝑧1 ě 1, (Top Right) down-branching 𝑧1 ď 1, and (Bottom Right) up-branching
𝑧1 ě 2.
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ing 𝐻ZZI
𝑑 , we are able to maintain the size of the Log/LogIB formulation, while nearly

matching the branching behavior of the Inc formulation. In Appendix C, we offer a

more complex example with an 8-piece concave piecewise linear function where this

effect is even more pronounced.

4.2 New hybrid formulations for bivariate piecewise

linear functions

We will now turn our attention to bivariate piecewise linear functions, in the hopes of

evaluating the computational performance of the new 6-stencil independent branch-

ing formulation of Chapter 2.8.3. Before this, though, we will see how we can blend

together embedding and independent branching formulations to create new hybrid

formulations that do not sacrifice the strength (i.e. the ideal property) of its com-

prising parts.

4.2.1 The combination of ideal formulations

Recall that the 6-stencil formulation for bivariate piecewise linear functions is com-

prised of two stages: the first in terms of two (aggregated) SOS2 constraints, the

second via a biclique representation for the “triangle selection” subconstraint. This

structure hints at the fact that we could potentially replace the independent branching

formulations for the two SOS2 constraints with any SOS2 formulation and maintain

validity. This means that, for example, we can construct a hybrid formulation for

bivariate functions over a grid triangulation by applying the ZZI formulation for the

aggregated SOS2 constraint along the 𝑥1 and the 𝑥2 dimension, and the 6-stencil

independent branching formulation to enforce triangle selection. However, in general

the intersection of ideal formulations will not be ideal, with independent branching

formulations being a notable exception. Fortunately, the following proposition shows

that this preservation of strength is not restricted to independent branching formula-

tions, but holds for any intersection of ideal formulations of combinatorial disjunctive
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constraints.

Proposition 17. For each 𝑡 P J𝑚K, take:

• 𝑈 𝑡 “
Ť𝑠𝑡

𝑖“1 𝑃 p𝑇
𝑖,𝑡q, where

Ť𝑠𝑖
𝑖“1 𝑇

𝑖,𝑡 “ 𝑉 .

• Π𝑡 Ď R𝑉 ˆR𝑟𝑡 as an LP relaxation such that t p𝜆, 𝑧𝑡q P Π𝑡 | 𝑧𝑡 P Z𝑟𝑡 u is an ideal

formulation of 𝑈 𝑡.

Then, an ideal formulation for
Ş𝑚

𝑡“1 𝑈
𝑡 is

$

&

%

p𝜆, 𝑧1, . . . , 𝑧𝑚q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p𝜆, 𝑧𝑡q P Π𝑡 @𝑡 P J𝑚K

𝑧𝑡 P Z𝑟𝑡 @𝑡 P J𝑚K

,

.

-

. (4.4)

Proof. For simplicity, assume w.l.o.g. that 𝑉 “ J𝑛K. Let

Π “
!

p𝜆, 𝑧1, . . . , 𝑧𝑚q P R𝑛`
ř𝑚

𝑖“1 𝑟𝑖

ˇ

ˇ

ˇ
p𝜆, 𝑧𝑡q P Π𝑡

@𝑡 P J𝑚K
)

be the LP relaxation of (4.4). Because the original formulations are ideal (and there-

fore also sharp), we have

Proj𝜆pΠq “
𝑚
č

𝑡“1

Proj𝜆pΠ
𝑡
q “

𝑚
č

𝑡“1

Convp𝑈 𝑡
q Ď ∆𝑛

“ Conv

˜

𝑚
č

𝑡“1

𝑈 𝑡

¸

,

and hence (4.4) is sharp, as Proj𝜆pΠq “ ∆𝑛.

To show (4.4) is also ideal, consider any point p𝜆̂, 𝑧1, . . . , 𝑧𝑚q P Π. First, we show

that if this point is extreme, then 𝜆̂ “ e𝑣 for some 𝑣 P J𝑛K. Consider some point

where 𝜆̂ is fractional; w.l.o.g., presume that 0 ă 𝜆̂1, 𝜆̂2 ă 1. Define 𝜆`
def
“ 𝜆̂` 𝜖e1´ 𝜖e2

and 𝜆´
def
“ 𝜆̂´ 𝜖e1` 𝜖e2 for sufficiently small 𝜖 ą 0; clearly 𝜆̂ “ 1

2
𝜆`` 1

2
𝜆´. We would

like to construct points 𝑧𝑡,` and 𝑧𝑡,´ for each 𝑡 P J𝑚K such that 𝑧𝑡 “ 1
2
𝑧𝑡,`` 1

2
𝑧𝑡,´, and

such that p𝜆`, 𝑧𝑡,`q, p𝜆´, 𝑧𝑡,´q P Π𝑡. Then p𝜆̂, 𝑧1, . . . , 𝑧𝑚q “ 1
2
p𝜆`, 𝑧1,`, . . . , 𝑧𝑚,`q `

1
2
p𝜆´, 𝑧1,´, . . . , 𝑧𝑚,´q is the convex combination of two other feasible points for Π, and

so is not extreme.

For a given 𝑡 P J𝑚K, define 𝐸𝑡 “
 

p𝑘, ℎq
ˇ

ˇ pe𝑘, ℎq P extpΠ𝑡q
(

, which is equivalent

to the set of all extreme points of Π𝑡. As p𝜆̂, 𝑧𝑡q P Π𝑡, there must exist some 𝛾𝑡 P ∆𝐸𝑡
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where p𝜆̂, 𝑧𝑡q “
ř

p𝑘,𝑧qP𝐸𝑡 𝛾𝑡
p𝑘,𝑧qpe

𝑘, ℎq. As 1, 2 P suppp𝜆̂q, there must exist some ℎ̃𝑡 and

ℎ̀𝑡 wherein p1, ℎ̃𝑡q, p2, ℎ̀𝑡q P 𝐸𝑡 and 0 ă 𝛾𝑡
p1,ℎ̃𝑡q

, 𝛾𝑡
p2,ℎ̀𝑡q

ă 1. Now define

𝛾𝑡,˘
p𝑘,ℎq “

$

’

’

’

’

’

&

’

’

’

’

’

%

𝛾𝑡
p𝑘,ℎq ˘ 𝜖 𝑘 “ 1, ℎ “ ℎ̃𝑡

𝛾𝑡
p𝑘,ℎq ¯ 𝜖 𝑘 “ 2, ℎ “ ℎ̀𝑡

𝛾𝑡
p𝑘,ℎq o.w.

Note that, as 𝛾𝑡 P ∆𝐸𝑡 , so is 𝛾𝑡,˘ P ∆𝐸𝑡 . Therefore, we may take

𝑧𝑡,`
def
“

ÿ

p𝑘,ℎqP𝐸𝑡

𝛾𝑡,`
p𝑘,ℎqℎ “ 𝜖ℎ̃𝑡

´ 𝜖ℎ̀𝑡
`

ÿ

p𝑘,ℎqP𝐸𝑡

𝛾𝑡
p𝑘,ℎqℎ

𝑧𝑡,´
def
“

ÿ

p𝑘,ℎqP𝐸𝑡

𝛾𝑡,´
p𝑘,ℎqℎ “´𝜖ℎ̃

𝑡
` 𝜖ℎ̀𝑡

`
ÿ

p𝑘,ℎqP𝐸𝑡

𝛾𝑡
p𝑘,ℎqℎ.

Then we may observe that 𝑧𝑡,`, 𝑧𝑡,´ P Π𝑡, and that 𝑧𝑡 “ 1
2
𝑧𝑡,` ` 1

2
𝑧𝑡,´. Now see that

𝜆˘ “
ÿ

p𝑘,ℎqP𝐸𝑡

𝛾𝑡,˘
p𝑘,ℎqe

𝑘
“

ÿ

p𝑘,ℎqP𝐸𝑡

𝛾𝑡
p𝑘,ℎqe

𝑘
˘ 𝜖e1 ¯ 𝜖e2 “ 𝜆̂˘ 𝜖e1 ¯ 𝜖e2

Therefore, for each 𝑡 P J𝑚K, we have that p𝜆`, 𝑧𝑡,`q, p𝜆´, 𝑧𝑡,´q P Π𝑡, and that p𝜆̂, 𝑧𝑡q “
1
2
p𝜆`, 𝑧𝑡,`q ` 1

2
p𝜆´, 𝑧𝑡,´q. This implies that p𝜆`, ℎ1,`, . . . , ℎ𝑚,`q, p𝜆`, ℎ1,´, . . . , ℎ𝑚,´q P

Π and that p𝜆̂, 𝑧1, . . . , 𝑧𝑚q “ 1
2
p𝜆`, ℎ1,`, . . . , ℎ𝑚,`q ` 1

2
p𝜆´, ℎ1,´, . . . , ℎ𝑚,´q. Therefore,

as our original point is a convex combination of two distinct points also feasible for

Π, it cannot be extreme. Therefore, we must have that 𝜆 “ e𝑣 for some 𝑣 P J𝑛K for

any extreme point of Π.

Now, assume for contradiction that Π has a fractional extreme point. Using

property of extreme points just stated, we may assume without loss of generality

that this fractional extreme point is of the form pe1, 𝑧1, . . . , 𝑧𝑚q with 𝑧1 R Z𝑟1 . As

pe1, 𝑧1q P Π1, then pe1, 𝑧1q “
ř

p𝑣,ℎqP𝐸1 𝛾p𝑣,ℎqpe
𝑣, ℎq for some 𝛾 P ∆𝐸1 . Also, as Π1 is

ideal and 𝑧1 is fractional, pe1, 𝑧1q R extpConvpΠ1qq, and so 𝛾 must have at least two
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non-zero components. But then

p𝜆̂, 𝑧1, 𝑧2, . . . , 𝑧𝑚q “
ÿ

p𝑣,ℎqP𝐸1

𝛾p𝑣,ℎqpe
1, ℎ, 𝑧2, . . . , 𝑧𝑚q,

a contradiction of the points extremality. Therefore, Π is ideal.

4.2.2 Bivariate computational experiments

To study the efficacy of the 6-stencil formulation, we perform a computational study

on a series of bicommodity transportation problems studied in Section 5.2 of Vielma

et al. [133]:

min
𝑥1,𝑥2

ÿ

𝑖P𝑆

ÿ

𝑗P𝐷

𝑓𝑖,𝑗p𝑥
1
𝑖,𝑗, 𝑥

2
𝑖,𝑗q

s.t.
ÿ

𝑖P𝑆

p𝑥1
𝑖,𝑗 ` 𝑥2

𝑖,𝑗q “ 𝑑𝑗 @𝑗 P 𝐷

ÿ

𝑗P𝐷

p𝑥1
𝑖,𝑗 ` 𝑥2

𝑖,𝑗q “ 𝑠𝑖 @𝑖 P 𝑆

𝑥1
𝑖,𝑗, 𝑥

2
𝑖,𝑗 ě 0 @𝑖 P 𝑆, 𝑗 P 𝐷,

The network for each instance is fixed with 5 supply nodes and 5 demand nodes,

and the objective functions for these instances are the sum of 25 concave, nondecreas-

ing bivariate piecewise linear functions over grid triangulations with 𝑑1 “ 𝑑2 “ 𝜅,

where 𝜅 P t4, 8, 16, 32u. The triangulation of each bivariate function is generated

randomly, which is the only difference from Vielma et al. [133], where the Union Jack

triangulation was used. To handle the generic triangulations, we apply the 6-stencil

formulation, coupled with either the Log, ZZB, or ZZI formulation for the SOS2 con-

straints, taking advantage of Proposition 17 (recall that Log and LogIB coincide when

𝑑 is a power-of-two). We compare these new formulations against the CC, MC, and DLog

formulations, which readily generalize to bivariate functions. We note in passing that

the Inc formulation approach also generalizes to bivariate piecewise linear functions,
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but requires the computation of a Hamiltonian cycle [137], a nontrivial task which

may not be practically viable for unstructured triangulations.

6-Stencil +
𝜅 Metric MC CC DLog Log ZZB ZZI

4

Mean (s) 1.4 1.5 0.9 0.4 0.4 0.4
Std 1.3 1.5 0.6 0.2 0.2 0.2
Win 0 0 0 29 31 40
Fail 0 0 0 0 0 0

8

Mean (s) 39.3 97.2 12.6 2.7 3.0 3.0
Std 75.0 179.6 9.8 2.2 2.4 2.9
Win 0 0 0 51 17 32
Fail 0 0 0 0 0 0

16

Mean (s) 1370.9 1648.1 352.8 24.6 26.5 35.2
Std 670.4 360.8 499.4 24.5 27.4 40.4
Win 0 0 0 43 31 6
Fail 53 66 6 0 0 0

32

Mean (s) 1800.0 1800.0 1499.6 133.5 167.6 246.5
Std - - 475.2 162.7 226.7 306.6
Win 0 0 0 63 15 2
Fail 80 80 50 0 0 1

Table 4.6: Computational results for bivariate transportation problems on grids of
size “ 𝑑1 “ 𝑑2.

In Table 4.6, we see that the new formulations are the fastest on every instance

in our test bed. For 𝜅 P t16, 32u, we see an average speed-up of over an order of

magnitude over the DLog formulation, the best of the existing approaches from the

literature. We see that the Log 6-stencil formulation wins a plurality or majority of

instances for 𝜅 P t8, 16, 32u, and that the hybrid ZZI 6-stencil formulation is out-

performed by the hybrid ZZB 6-stencil formulation by a non-trivial amount on larger

instances. Moreover, each of our new formulations is strictly faster than all existing

formulations on every instance in the test bed. Finally, we highlight the largest family

of instances (𝜅 “ 32), where existing methods are unable to solve 50 of 80 instances in

30 minutes or less, whereas our new formulations can solve all in a matter of minutes,

on average.

For completeness, we also perform bivariate computational experiments where 𝜅

is not a power-of-two, now adding the LogIB 6-stencil formulation as an option for the
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6-Stencil +
𝜅 Metric MC CC DLog Log LogIB ZZB ZZI

6

Mean (s) 9.2 20.8 4.7 1.2 1.5 1.5 1.1
Std 12.0 33.0 3.4 0.7 1.1 1.2 0.6
Win 0 0 0 31 9 12 48
Fail 0 0 0 0 0 0 0

13

Mean (s) 1092.9 1507.9 320.3 16.8 16.5 17.3 18.1
Std 729.7 535.4 478.7 18.6 15.7 18.6 19.3
Win 0 0 0 16 26 23 15
Fail 37 58 4 0 0 0 0

28

Mean (s) 1768.1 1800.0 1426.2 127.3 131.2 113.4 192.7
Std 139.6 - 513.5 174.5 188.7 129.7 254.9
Win 0 0 0 20 26 31 3
Fail 75 80 46 0 0 0 0

Table 4.7: Computational results for transportation problems whose objective func-
tion is the sum of bivariate piecewise linear objective functions on grids of size
𝜅 “ 𝑑1 “ 𝑑2, when 𝜅 is not a power-of-two.

SOS2 constraints. We generate the instances by taking each piecewise linear function

and randomly dropping log2p𝜅q ´ 1 gridpoints from the interior of the domain along

each axis. We present the results in Table 4.7. In comparison to the powers-of-two

experiment in Table 4.6, we still observe that all new formulations dominate the

existing approaches on every instance. However, we now see that the ZZB hybrid

formulation is the best performing formulation on the largest instances (𝜅 “ 28).

There is no significant difference between the Log and LogIB 6-stencil formulations.

Additionally, we repeat these experiments with the Gurobi solver, which we in-

clude in Appendix D. The results are largely the same as with the CPLEX solver,

with the 6-stencil formulation winning on every instance in the test bed, and solving

over an order of magnitude faster on larger instances than the other approaches.

4.2.3 Optimal independent branching schemes

The 6-stencil formulation is quite small, requiring only rlog2p𝑑1qs ` rlog2p𝑑2qs ` 6

integer variables. As discussed in Chapter 2.8.1, this is within a constant additive

factor of our lower bound of rlog2p𝑑1q` log2p𝑑2q` 1s. We also know that the 6-stencil

formulation is not always the smallest possible independent branching formulation:
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𝜅 Metric Log+6S Log+Opt ZZB+6S ZZB+Opt ZZI+6S ZZI+Opt

4
Mean (s) 0.420 0.408 0.424 0.406 0.414 0.395

Sample std 0.217 0.289 0.256 0.295 0.203 0.278
Win 7 24 17 16 11 25

8
Mean (s) 2.791 2.805 3.021 3.077 3.141 3.178

Sample std 2.390 2.258 2.400 2.185 3.129 2.492
Win 26 26 10 12 13 13

Table 4.8: Comparison of bivariate piecewise-linear grid triangulation formulations
using the 6-stencil approach (6S) against an optimal triangle selection formulation
(Opt) on grids of size 𝜅 “ 𝑑1 “ 𝑑2.

for the Union Jack triangulation, the construction of Vielma and Nemhauser [133]

requires only rlog2p𝑑1qs ` rlog2p𝑑2qs ` 1 integer variables. This constant term can

often have significant impact on the overall computational performance, particularly

for problems with many, relatively small piecewise linear functions. For example, if

we have a grid triangulation with 𝑑1 “ 𝑑2 “ 8, there is a lower bound (attained by

the construction of Vielma and Nemhauser) of 7 levels, while the 6-stencil approach

gives a formulation with 12 levels, nearly twice as large. Therefore, it stands to reason

that there might be some remaining performance gains to be made by reducing this

constant factor.

Fortunately, as we have an equivalency between biclique covers and independent

branching formulations (Theorem 3), we can frame the question of finding the small-

est formulation as a combinatorial optimization problem. Indeed, we have seen in

Proposition 4 that we can solve this using MIP. As an illustration, we construct hy-

brid formulations that combine a logarithmic formulation for the aggregated SOS2

constraints, along with an optimal biclique representation for the triangle selection

subconstraint. In preliminary experiments, we did not observe significant practical

advantage for using an optimal representation for the complete triangulation.

In Table 4.8, we report computational experiments for this optimal triangle selec-

tion approach on our bivariate test problems with grids of size 𝑑1 “ 𝑑2 “ 𝜅 P t4, 8u.

We study hybrid formulations comprised of one of the Log, ZZB, and ZZI formula-

tions, coupled with either the 6-stencil or an optimal triangle selection formulation.

For 𝜅 “ 4, we observe that the optimal triangle selection formulations win on 65 of

100 instances, with relatively lower solve times, on average, than their 6-stencil coun-
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terparts. For the family of larger instances with 𝜅 “ 8, the optimal triangle selection

formulations win on 51 of 100 instances. Interestingly, the optimal triangle selection

formulations exhibit slightly higher average solve times than the 6-stencil ones, but

with a lower variance in solve time.

The MIP formulation for computing optimal triangle selection representations

does not scale for instances with 𝜅 ą 8, so the evaluation of this approach on larger

instances will require new solution techniques for the minimum depth biclique cover

problem. However, the subproblems to compute the optimal triangle selection for-

mulations with 𝜅 “ 4 solved relatively quickly, on the order of a few seconds. We

note that, with 𝜅 “ 8, the minimum triangle selection formulation had 3 levels on 54

instances and 4 levels on 46 instances. For the sake of comparison: on those instances

where the minimum size representation has 3 levels, the optimal triangle selection

formulations had 175 binary variables and 350 general inequality constraints total,

while the 6-stencil formulations has 250 binary variables and 500 general inequality

constraints.

4.3 Computational tools for piecewise linear model-

ing: PiecewiseLinearOpt

Throughout this thesis, we have investigated a number of possible formulations for

optimization problems containing piecewise linear functions. The performance of

these formulations can be highly dependent on latent structure of the function and

its domain, and there are potentially a number of formulations one may want to try

on a given problem instance. However, these formulations can seem quite complex

and daunting to a practitioner, especially one unfamiliar with the intricacies and

idiosyncrasies of MIP modeling. Anecdotally, we have observed that the complexity

of these formulations has driven potential users to simpler but less performant models,

or to abandon MIP altogether for other approaches.

This gap between high-performance and accessibility is fundamental throughout
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using JuMP, PiecewiseLinearOpt, CPLEX
model = Model(solver=CplexSolver())
@variable(model, 0 <= x[1:2] <= 4)
xval = [0,1,2,3,4]
fval = [0,4,7,9,10]
z1 = piecewiselinear(model, x, xval, fval, method=:Log)
f(u,v) = 2*(u-1/3)^2 + 3*(v-4/7)^4
dx = dy = linspace(0, 1, 9)
pwl = BivariatePWLFunction(dx, dy, f, pattern=:BestFit)
z2 = piecewiselinear(model, x[1], x[2], pwl, method=:ZZI)
@objective(model, Min, z1 + z2)

Figure 4-5: PiecewiseLinearOpt code showing how to add univariate and bivariate
piecewise linear functions to a JuMP model.

optimization. One essential tool to help close the gap is the modeling language,

which allows the user to express an optimization problem in a user-friendly, pseudo-

mathematical style, and obviates the need to interact with the underlying opti-

mization solver directly. Because they offer a much more welcoming experience for

the modeler, algebraic modeling languages have been widely used for decades, with

AMPL [55] and GAMS [117] being two particularly storied and successful commercial

examples. JuMP [48] is a recently developed open-source algebraic modeling language

in the Julia programming language [21] which offers state-of-the-art performance and

advanced functionality, and is readily extensible.

To accompany the advanced formulations presented in this thesis, we have created

PiecewiseLinearOpt, a Julia package that extends JuMP to offer all the formulation

options discussed herein through a simple, high-level modeling interface. The package

supports continuous univariate piecewise linear functions, and bivariate piecewise

linear functions over grid triangulations.

In Figure 4-5, we see sample code for adding piecewise linear functions to JuMP

models. After loading the required packages, we define the Model object, and add

the x variables to it. We add the univariate function (1.11) to our model, specifying

it in terms of the breakpoints xval of the domain, and the corresponding function

values fval at these breakpoints. We call the piecewiselinear function, while using

the Log formulation. It returns a JuMP variable z1 which is constrained to lie in

the graph grp𝑓q of the function, and can then used anywhere in the model, e.g. in
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the objective function. After this, we add a bivariate piecewise linear function to our

model by approximating a nonlinear function on the box domain r0, 1s2. We construct

a BivariatePWLFunction object to approximate it, choosing the triangulation such

that it best approximates the function values at the centerpoint of each subrectangle

in the grid. We use the ZZI formulation along each axis 𝑥1 and 𝑥2; it will automatically

use the 6-stencil triangle selection portion of the formulation, as the triangulation is

unstructured.

To showcase the PiecewiseLinearOpt package in a more practical setting, we

will use it to produce lower bounds for the cutting circle problem, as proposed by

Rebennack [116]. The cutting circle problem aims to place 𝐼 circles in the plane, each

with fixed radii 𝑅𝑖, in a rectangle without overlap, while minimizing the total area of

the bounding rectangle. Mathematically, we can express this as

min
𝑥,𝑈

logp𝑈1q ` logp𝑈2q

s.t. p𝑥𝑖
1 ´ 𝑥𝑗

1q
2
` p𝑥𝑖

2 ´ 𝑥𝑗
2q

2
ě p𝑅𝑖 `𝑅𝑗q

2
@𝑖, 𝑗 P r𝐼s2

𝑅𝑖 ď 𝑥𝑖
𝑡 ď 𝑈𝑡 ´𝑅𝑖 @𝑖 P J𝐼K, 𝑡 P t1, 2u

0 ď 𝑈𝑡 ď 2
𝐼
ÿ

𝑖“1

𝑅𝑖 @𝑡 P t1, 2u.

We can easily express this optimization problem in JuMP and use the PiecewiseLinearOpt

package to discretize the nonconvexities that appear in the objective and the con-

straints. In Figure 4-6 we see the entirety of the JuMP code needed to solve the re-

laxation for the cutting circle problem. In particular, we use a uniform discretization

for each nonlinearity with N=9 segments and determine the piecewise linear functions

by interpolating the function values at the breakpoints. Note that the code is written

agnostic to the choice of formulation for the univariate piecewise linear functions; we

can easily perform a comparison among the many options by changing only one line

of code (the definition of METHOD).

We believe that this exemplifies the value of PiecewiseLinearOpt, and modeling

languages more generally: it allows a user to quickly and easily write their problem
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using JuMP, PiecewiseLinearOpt, CPLEX
I = 12; R = rand(I); N = 9
model = Model(solver=CplexSolver())
METHOD = :ZZI
@variable(model, x[i=1:I,1:2] >= R[i])
@variable(model, 0 <= U[1:2] <= 2sum(R))
for i in 1:I

@constraint(model, x[i,1] <= U[1] - R[i])
@constraint(model, x[i,2] <= U[2] - R[i])
for j in (i+1):I

disc = linspace(-2sum(R)+R[i]+R[j], 2sum(R)-R[i]-R[j], N)
sqr_x1 = piecewiselinear(model, x[i,1]-x[j,1], disc, t->t^2, method=METHOD)
sqr_x2 = piecewiselinear(model, x[i,2]-x[j,2], disc, t->t^2, method=METHOD)
@constraint(model, sqr_x1 + sqr_x2 >= (R[i]+R[j])^2)

end
end
disc = linspace(2maximum(R), 2sum(R), N)
log_U1 = piecewiselinear(model, U[1], disc, log, method=METHOD)
log_U2 = piecewiselinear(model, U[2], disc, log, method=METHOD)
@objective(model, Min, log_U1 + log_U2)

Figure 4-6: JuMP code for the cutting circle problem using PiecewiseLinearOpt.

as code, and then iterate as-needed to solve more quickly or to add complexity. For

example, we can alter the breakpoint values in the code in Figure 4-6 to modify the

model to produce feasible solutions and upper bounds on the optimal solution, or to

incorporate the number of other advanced alterations as studied by Rebennack [116].

The PiecewiseLinearOpt package supports all the formulations presented in this

work, and can handle the construction and formulation of both structured or un-

structured grid triangulations. All this complexity is hidden from the user, who can

embed piecewise linear functions in their optimization problem in a single line of code

with the piecewiselinear function. We hope that this simple computational tool

will make the advanced formulations available for modeling piecewise linear functions

more broadly accessible to researchers and practitioners.
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4.4 Preliminary extensions: MIP formulations for

neural networks

We now turn our attention to high-dimensional piecewise linear functions. This regime

is much more complex than what we have studied thus far: there can easily be expo-

nentially many pieces and extreme points, and so just writing down (much less formu-

lating) a high-dimensional piecewise linear functions is a formidable task. Therefore,

we will focus on a particular class of high-dimensional piecewise linear functions that

arises from the composition of a number of very simple nonlinearities given by the

ReLu activation unit.

4.4.1 Existing formulations

There has been a recent surge of interest in the use of MIP formulations for solving

optimization problems containing trained neural networks with ReLu activation units.

A standard approach to formulating a single ReLu activation would be to start by for-

mulating the two-dimensional set MAXp𝑙, 𝑢q
def
“ t p𝑣, 𝑦q P r𝑙, 𝑢s ˆ Rě0 | 𝑦 “ maxt0, 𝑣u u.

It is possible to construct an non-extended ideal formulation for this set as

𝑦 ě 𝑣 (4.5a)

𝑦 ď 𝑣 ´ 𝑙p1´ 𝑧q (4.5b)

𝑦 ď 𝑢𝑧 (4.5c)

p𝑣, 𝑦, 𝑧q P Rˆ Rě0 ˆ t0, 1u. (4.5d)

From this, it is simple to construct a formulation for ReLu as

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p𝑥, 𝑣, 𝑦, 𝑧q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

𝑣 “ 𝑤 ¨ 𝑥` 𝑏

p𝑣, 𝑦q P MAXp𝑙, 𝑢q

𝐿 ď 𝑥 ď 𝑈

𝑧 P t0, 1u

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

, (4.6)
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where we select 𝑙 “ min t 𝑤 ¨ 𝑥` 𝑏 | 𝐿 ď 𝑥 ď 𝑈 u and 𝑢 “ max t 𝑤 ¨ 𝑥` 𝑏 | 𝐿 ď 𝑥 ď 𝑈 u.

This is the approach taken recently by a bevy of authors [5, 31, 122, 126]. Note that

it is straightforward to project out the 𝑣 variable. Unfortunately, this formulation is

no longer ideal, or even sharp.

Example 6. Consider the ReLu activation given by the data 𝐿 “ p´1,´1q, 𝑈 “ p1, 1q,

𝑤 “ p1, 1q, and 𝑏 “ 1. Then the LP relaxation for formulation (4.6) for ReLu is

𝑣 “ 𝑥1 ` 𝑥2 ` 1

𝑦 ď 𝑣 ` p1´ 𝑧q

𝑦 ď 3𝑧

𝑦 ě 𝑣

´1 ď 𝑥𝑖 ď 1 @𝑖 P t1, 2u

p𝑣, 𝑦, 𝑧q P Rˆ Rě0 ˆ r0, 1s.

We may compute that the point p𝑥̂, 𝑣, 𝑦, 𝑧q “ pp1,´1q, 1, 3{2, 1{2q is feasible for the

LP relaxation; however, we have that p𝑥̂, 𝑦q ” pp1,´1q, 3{2q is not in

Convpt p𝑥, 𝑦q P r𝐿,𝑈 s ˆ Rě0 | 𝑦 “ maxt0, 𝑥1 ` 𝑥2 ` 1u u ,

and so the formulation is not sharp.

Anderson et al. [5] present an ideal extended formulation for ReLu, though they

observe that the formulation does not appear to offer substantial computational im-

provements in general. We now present an ideal, non-extended formulation for ReLu.

4.4.2 An ideal formulation for a single ReLu

For simplicity, we will assume for the remainder that 𝑤 ě 0 and that 𝐿 ď 0𝜂 ď 𝑈 .

Note that both are without loss of generality, provided we are allowed to flip compo-

nents of 𝑥 and alter the bias term 𝑏. A crucial observation is that this simplification

allows us to state that 𝑙 ”
ř𝜂

𝑖“1𝑤𝑖𝐿𝑖 ` 𝑏 and 𝑢 ”
ř𝜂

𝑖“1𝑤𝑖𝑈𝑖 ` 𝑏.
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Our construction works by expressing ReLu as the union of two closely related

sets: ReLu “ Proj𝑥,𝑦pΓ
0 Y Γ1q, where

Γ0
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p𝑥, 𝑦, 𝑧q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

𝐿 ď 𝑥 ď 𝑈

𝑦 “ 0

𝑧 “ 0

𝑤 ¨ 𝑥` 𝑏 ď 0

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

Γ1
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p𝑥, 𝑦, 𝑧q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

𝐿 ď 𝑥 ď 𝑈

𝑦 ě 0

𝑧 “ 1

𝑤 ¨ 𝑥` 𝑏 “ 𝑦

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

.

We then are able to prove our result, taking inspiration from Hijazi et al. [62, 63].

Proposition 18. The following is an ideal formulation for ReLu:

𝑦 ě 𝑤 ¨ 𝑥` 𝑏 (4.7a)

𝑦 ď
ÿ

𝑖P𝐼

𝑤𝑖𝑥𝑖 ´
ÿ

𝑖P𝐼

𝑤𝑖𝐿𝑖p1´ 𝑧q `

˜

𝑏`
ÿ

𝑖R𝐼

𝑤𝑖𝑈𝑖

¸

𝑧 @𝐼 Ď J𝜂K (4.7b)

𝑦 ě
ÿ

𝑖P𝐼

𝑤𝑖𝑥𝑖 ´
ÿ

𝑖P𝐼

𝑤𝑖𝑈𝑖p1´ 𝑧q `

˜

𝑏`
ÿ

𝑖R𝐼

𝑤𝑖𝐿𝑖

¸

𝑧 @𝐼 Ď J𝜂K (4.7c)

p𝑥, 𝑦, 𝑧q P r𝐿,𝑈 s ˆ Rě0 ˆ r0, 1s (4.7d)

𝑧 P t0, 1u. (4.7e)

Proof. Take Γ˚ as the feasible set for (4.7a-4.7d) (i.e. the LP relaxation for our

formulation). We first show that ConvpΓ0YΓ1q Ď Γ˚. We can check that Γ0 Ď Γ˚, as

(4.7b) reduces to 𝑦 ď
ř

𝑖P𝐼 𝑤𝑖p𝑥𝑖 ´ 𝐿𝑖q for each 𝐼 Ď J𝑛K, whose validity is ensured by

the bound 𝑥 ě 𝐿. Similarly, we can check that Γ1 Ď Γ˚, as in this case (4.7b) reduces

𝑦 ď
ř

𝑖P𝐼 𝑤𝑖𝑥𝑖 `
ř

𝑖R𝐼 𝑤𝑖𝑈𝑖 ` 𝑏, which follows from the bound 𝑥 ď 𝑈 . An analogous

argument holds for the constraints in (4.7c), and so ConvpΓ0 Y Γ1q Ď Γ˚ follows.

To show that Γ˚ Ď ConvpΓ0 Y Γ1q, first we assume w.l.o.g. that 𝑤 ą 0 (else we
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can omit any components with zero components from the formulation). Then we

construct the ideal MC extended formulation:

𝑥 “ 𝑥0
` 𝑥1

𝑦 “ 𝑦0 ` 𝑦1

𝑧 “ 𝑧0 ` 𝑧1

𝜆0
` 𝜆1

“ 1

𝑦0 “ 𝑧0 “ 0

𝑤 ¨ 𝑥0
` 𝑏𝜆0

ď 0

𝐿𝜆0
ď 𝑥0

ď 𝑈𝜆0

𝑧1 “ 𝜆1

𝑤 ¨ 𝑥1
` 𝑏𝜆1

“ 𝑦1

𝐿𝜆1
ď 𝑥1

ď 𝑈𝜆1

𝜆 ě 0

Then we identify 𝑥0 ” 𝑥´ 𝑥1, 𝑥1 ” 𝑥̃, 𝑦 ” 𝑦1, 𝑧 ” 𝑧1, and 𝜆0 ” 1´ 𝑧 to get

𝑤 ¨ p𝑥´ 𝑥̃q ` 𝑏p1´ 𝑧q ď 0 (4.8a)

𝐿p1´ 𝑧q ď 𝑥´ 𝑥̃ ď 𝑈p1´ 𝑧q (4.8b)

𝑤 ¨ 𝑥̃` 𝑏𝑧 “ 𝑦 (4.8c)

𝐿𝑧 ď 𝑥̃ ď 𝑈𝑧 (4.8d)

p𝑦, 𝑧q P R` ˆ r0, 1s, (4.8e)

where we say that Γ “ t p𝑥, 𝑥̃, 𝑦, 𝑧q | (4.8) u.
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We can apply Fourier-Motzkin to achieve our result. First, we rewrite Γ as

𝑥̃𝜂 ď 𝑥𝜂 ´ 𝐿𝜂p1´ 𝑧q

𝑥̃𝜂 ď 𝑈𝜂𝑧

𝑥̃𝜂 ď
1

𝑤𝜂

˜

𝑦 ´ 𝑏𝑧 ´
𝜂´1
ÿ

𝑖“1

𝑤𝑖𝑥̃𝑖

¸

𝑥̃𝜂 ě 𝑥𝜂 ´ 𝑈𝜂p1´ 𝑧q

𝑥̃𝜂 ě 𝐿𝜂𝑧

𝑥̃𝜂 ě
1

𝑤𝜂

˜

𝑦 ´ 𝑏𝑧 ´
𝜂´1
ÿ

𝑖“1

𝑤𝑖𝑥̃𝑖

¸

𝑥̃𝜂 ě
1

𝑤𝜂

˜

𝜂´1
ÿ

𝑖“1

𝑤𝑖p𝑥𝑖 ´ 𝑥̃𝑖q ` 𝑤𝜂𝑥𝜂 ` 𝑏p1´ 𝑧q

¸

𝑥̃𝑖 ď 𝑥𝑖 ´ 𝐿𝜂p1´ 𝑧q @𝑖 P J𝜂 ´ 1K

𝑥̃𝑖 ď 𝑈𝜂𝑧 @𝑖 P J𝜂 ´ 1K

𝑥̃𝑖 ě 𝑥𝑖 ´ 𝑈𝜂p1´ 𝑧q @𝑖 P J𝜂 ´ 1K

𝑥̃𝑖 ě 𝐿𝜂𝑧 @𝑖 P J𝜂 ´ 1K

p𝑦, 𝑧q P Rě0 ˆ r0, 1s.
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and eliminate the 𝑥̃𝜂 variable:

𝑥𝜂 ´ 𝑈𝜂p1´ 𝑧q ď 𝑥𝜂 ´ 𝐿𝜂p1´ 𝑧q

𝑥𝜂 ´ 𝑈𝜂p1´ 𝑧q ď 𝑈𝜂𝑧

𝑥𝜂 ´ 𝑈𝜂p1´ 𝑧q ď
1

𝑤𝜂

˜

𝑦 ´ 𝑏𝑧 ´
𝜂´1
ÿ

𝑖“1

𝑤𝑖𝑥̃𝑖

¸

𝐿𝜂𝑧 ď 𝑥𝜂 ´ 𝐿𝜂p1´ 𝑧q

𝐿𝜂𝑧 ď 𝑈𝜂𝑧

𝐿𝜂𝑧 ď
1

𝑤𝜂

˜

𝑦 ´ 𝑏𝑧 ´
𝜂´1
ÿ

𝑖“1

𝑤𝑖𝑥̃𝑖

¸

1

𝑤𝜂

˜

𝑦 ´ 𝑏𝑧 ´
𝜂´1
ÿ

𝑖“1

𝑤𝑖𝑥̃𝑖

¸

ď 𝑥𝜂 ´ 𝐿𝜂p1´ 𝑧q

1

𝑤𝜂

˜

𝑦 ´ 𝑏𝑧 ´
𝜂´1
ÿ

𝑖“1

𝑤𝑖𝑥̃𝑖

¸

ď 𝑈𝜂𝑧

1

𝑤𝜂

˜

𝑦 ´ 𝑏𝑧 ´
𝜂´1
ÿ

𝑖“1

𝑤𝑖𝑥̃𝑖

¸

ď
1

𝑤𝜂

˜

𝑦 ´ 𝑏𝑧 ´
𝜂´1
ÿ

𝑖“1

𝑤𝑖𝑥̃𝑖

¸

1

𝑤𝜂

˜

𝜂´1
ÿ

𝑖“1

𝑤𝑖p𝑥𝑖 ´ 𝑥̃𝑖q ` 𝑤𝜂𝑥𝜂 ` 𝑏p1´ 𝑧q

¸

ď 𝑥𝜂 ´ 𝐿𝜂p1´ 𝑧q

1

𝑤𝜂

˜

𝜂´1
ÿ

𝑖“1

𝑤𝑖p𝑥𝑖 ´ 𝑥̃𝑖q ` 𝑤𝜂𝑥𝜂 ` 𝑏p1´ 𝑧q

¸

ď 𝑈𝜂𝑧

1

𝑤𝜂

˜

𝜂´1
ÿ

𝑖“1

𝑤𝑖p𝑥𝑖 ´ 𝑥̃𝑖q ` 𝑤𝜂𝑥𝜂 ` 𝑏p1´ 𝑧q

¸

ď
1

𝑤𝜂

˜

𝑦 ´ 𝑏𝑧 ´
𝜂´1
ÿ

𝑖“1

𝑤𝑖𝑥̃𝑖

¸

𝑥̃𝑖 ď 𝑥𝑖 ´ 𝐿𝜂p1´ 𝑧q @𝑖 P J𝜂 ´ 1K

𝑥̃𝑖 ď 𝑈𝜂𝑧 @𝑖 P J𝜂 ´ 1K

𝑥̃𝑖 ě 𝑥𝑖 ´ 𝑈𝜂p1´ 𝑧q @𝑖 P J𝜂 ´ 1K

𝑥̃𝑖 ě 𝐿𝜂𝑧 @𝑖 P J𝜂 ´ 1K

p𝑦, 𝑧q P Rě0 ˆ r0, 1s.

Now we explicitly impose the variable bounds 𝐿𝜂 ď 𝑥𝜂 ď 𝑈𝜂, and rewrite this system,
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dropping redundant constraints, as

𝑤𝜂𝑥𝜂 ´ 𝑤𝜂𝑈𝜂p1´ 𝑧q ď 𝑦 ´ 𝑏𝑧 ´
𝜂´1
ÿ

𝑖“1

𝑤𝑖𝑥̃𝑖

𝑤𝜂𝐿𝜂𝑧 ď 𝑦 ´ 𝑏𝑧 ´
𝜂´1
ÿ

𝑖“1

𝑤𝑖𝑥̃𝑖

𝑦 ´ 𝑏𝑧 ´
𝜂´1
ÿ

𝑖“1

𝑤𝑖𝑥̃𝑖 ď 𝑤𝜂𝑥𝜂 ´ 𝐿𝜂𝑤𝜂p1´ 𝑧q

𝑦 ´ 𝑏𝑧 ´
𝜂´1
ÿ

𝑖“1

𝑤𝑖𝑥̃𝑖 ď 𝑈𝜂𝑤𝜂𝑧

𝜂´1
ÿ

𝑖“1

𝑤𝑖p𝑥𝑖 ´ 𝑥̃𝑖q ` 𝑏p1´ 𝑧q ď ´𝐿𝜂𝑤𝜂p1´ 𝑧q

𝜂´1
ÿ

𝑖“1

𝑤𝑖p𝑥𝑖 ´ 𝑥̃𝑖q ` 𝑤𝜂𝑥𝜂 ` 𝑏p1´ 𝑧q ď 𝑈𝜂𝑤𝜂𝑧

𝑦 ě
𝜂
ÿ

𝑖“1

𝑤𝑖𝑥𝑖 ` 𝑏

𝑥̃𝑖 ď 𝑥𝑖 ´ 𝐿𝜂p1´ 𝑧q @𝑖 P J𝜂 ´ 1K

𝑥̃𝑖 ď 𝑈𝜂𝑧 @𝑖 P J𝜂 ´ 1K

𝑥̃𝑖 ě 𝑥𝑖 ´ 𝑈𝜂p1´ 𝑧q @𝑖 P J𝜂 ´ 1K

𝑥̃𝑖 ě 𝐿𝜂𝑧 @𝑖 P J𝜂 ´ 1K

p𝑥, 𝑦, 𝑧q P r𝐿,𝑈 s ˆ Rě0 ˆ r0, 1s.

Repeating this procedure to eliminate the remaining components of 𝑥̃ gives the desired

result.

4.4.3 A separation procedure

As the formulation (4.7) has exponentially many constraints, it behooves us to find

a way to separate the constraints dynamically as-needed. To do this, we start by

observing if that we construct the valid formulation given by (4.7a,4.7d-4.7e), along

with the constraints (4.7b) corresponding to the index sets 𝐼 “ H and 𝐼 “ J𝑛K,
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we recover a formulation which is equivalent to (4.6). As shown in Example 6, this

formulation is neither ideal nor sharp, so we would like to construct a procedure to

generate constraints from the exponentially-sized families (4.7b) and (4.7c) as-needed

to separate some point p𝑥̂, 𝑦, 𝑧q feasible for the incomplete formulation.

We can separate constraints (4.7b) by solving a problem of the form

𝛼 “ min
𝜏Pt0,1u𝜂

𝜂
ÿ

𝑖“1

p𝑤𝑖𝑥̂𝑖 ´ 𝑤𝑖𝐿𝑖p1´ 𝑧qq 𝜏𝑖 ` 𝑤𝑖𝑈𝑖𝑧p1´ 𝜏𝑖q

If 𝛼 ă 𝑦´ 𝑏𝑧 with corresponding feasible solution 𝜏 , then the constraint given by the

set 𝐼 “ t 𝑖 P J𝑛K | 𝜏𝑖 “ 1 u,

𝑦 ď
ÿ

𝑖P𝐼

𝑤𝑖𝑥𝑖 ´
ÿ

𝑖P𝐼

𝑤𝑖𝐿𝑖p1´ 𝑧q `

¨

˝𝑏`
ÿ

𝑖R𝐼

𝑤𝑖𝑈𝑖

˛

‚𝑧,

separates the point. This problem can be solved greedily: add 𝑖Ð 𝐼 if

𝑥̂𝑖 ă 𝑈𝑖𝑧 ` 𝐿𝑖p1´ 𝑧q “ 𝐿𝑖 ` p𝑈𝑖 ´ 𝐿𝑖q𝑧.

Similarly, we may separate constraints (4.7c) by constructing 𝐼 as the set of all 𝑖 P J𝑛K

such that

𝑥̂𝑖 ą 𝑈𝑖p1´ 𝑧q ` 𝐿𝑖𝑧 “ 𝑈𝑖 ´ p𝑈𝑖 ´ 𝐿𝑖q𝑧.

If

𝑦 ă
ÿ

𝑖P𝐼

𝑤𝑖𝑥̂𝑖 ´
ÿ

𝑖P𝐼

𝑤𝑖𝑈𝑖p1´ 𝑧q `

¨

˝𝑏`
ÿ

𝑖R𝐼

𝑤𝑖𝐿𝑖

˛

‚𝑧,

then we have separated a constraint in the family (4.7c), and if this inequality does

not hold, then no such inequality separates the given point.

Example 7. We return to the instance in Example 6, where we saw that the formu-

lation (4.6) was not sharp. To do this, we produced the feasible point p𝑥̂, 𝑣, 𝑦, 𝑧q “

pp1,´1q, 1, 3{2, 1{2q. Applying our separation procedure for the family (4.7b), for
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𝑖 “ 1 we have

𝑥̂1 “ 1 ­ă 0 “ 𝐿1 ` p𝑈1 ´ 𝐿1q𝑧,

and for 𝑖 “ 2 we have

𝑥̂2 “ ´1 ă 0 “ 𝐿1 ` p𝑈1 ´ 𝐿1q𝑧.

Therefore we take 𝐼 “ t2u, and our separated inequality is

𝑦 ď 𝑤2𝑥2 ´ 𝑤2𝐿2p1´ 𝑧q ` p𝑏` 𝑤1𝑈1q𝑧 “ 𝑥2 ` 𝑧 ` 1

Applying the similar construction to the family (4.7c), we get 𝐼 “ t1u. However, we

can check that the resulting inequality

𝑦 ě 𝑥1 ` 𝑧 ´ 1

is not violated, and so our procedure does not produce a violated constraint in this

family.

4.4.4 Valid inequalities for multiple layers

Although we now have an ideal non-extended formulation for a single ReLu activation

unit, it is not hard to see that the composition of such units in a multi-layered network

will not, in general, also be ideal. Therefore, we can endeavor to construct stronger

formulations for the composition of multiple ReLu units. An explicit description of

ideal formulations for multiple layers is beyond the scope of this section, but to close

the chapter we present families of valid inequalities that can be used to strengthen

our formulations.

Take 𝐹𝑑
def
“ t p𝑥, 𝑦, 𝑧q | (4.6) u as the big-𝑀 formulation for a single ReLu activation

unit when the input 𝑥 is 𝑑-dimensional. We construct a big-𝑀 MIP formulation for
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two layers at once as

$

’

’

’

&

’

’

’

%

`

𝑥, p𝑦1, . . . , 𝑦𝑑q, p𝑧1, . . . , 𝑧𝑑q, 𝑦, 𝑧
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

𝐿 ď 𝑥 ď 𝑈

p𝑥, 𝑦𝑖, 𝑧𝑖q P 𝐹𝜂 @𝑖 P J𝑑K
`

p𝑦1, . . . , 𝑦𝑑q, 𝑦, 𝑧
˘

P 𝐹𝑑

,

/

/

/

.

/

/

/

-

. (4.9)

Denote this set as TwoLayer.

Proposition 19. For each 𝑗 P J𝑑K, fix a subset 𝐼𝑗 Ď J𝜂K. Then valid inequalities for

TwoLayer include:

𝑦 ě
𝑑
ÿ

𝑗“1

𝑤̃𝑗

˜

ÿ

𝑖P𝐼𝑗

𝑤𝑗
𝑖𝑥𝑖 ´

ÿ

𝑖P𝐼𝑗

𝑤𝑗
𝑖𝑈𝑖p1´ 𝑧q ` 𝑏𝑗𝑧 `

ÿ

𝑖R𝐼𝑗

𝑤𝑗
𝑖𝐿𝑖𝑧

¸

` 𝑏̃𝑧 (4.10a)

𝑦 ď
𝑑
ÿ

𝑗“1

𝑤̃𝑗

˜

𝑦𝑗 ´
ÿ

𝑖P𝐼𝑗

𝑤𝑗
𝑖𝑥𝑖 `

ÿ

𝑖P𝐼𝑗

𝑤𝑗
𝑖𝑈𝑖𝑧 ´ 𝑏𝑗p1´ 𝑧q ´

ÿ

𝑖R𝐼𝑗

𝑤𝑗
𝑖𝐿𝑖p1´ 𝑧q

¸

` 𝑏̃𝑧 (4.10b)

Proof. Validity of (4.10a)

If 𝑧 “ 0, the inequality reduces to

𝑦 ě
𝑑
ÿ

𝑗“1

𝑤̃𝑗

˜

ÿ

𝑖P𝐼𝑗

𝑤𝑗
𝑖 p𝑥𝑖 ´ 𝑈𝑖q

¸

,

which follows as 𝑦 “ 0, 𝑤̃𝑗, 𝑤
𝑗
𝑖 ě 0 for each 𝑖 and 𝑗, and 𝑥 ď 𝑈 . If 𝑧 “ 1, then the

inequality reduces to

𝑦 ě
𝑑
ÿ

𝑗“1

𝑤̃𝑗

˜

ÿ

𝑖P𝐼𝑗

𝑤𝑗
𝑖𝑥𝑖 ` 𝑏𝑗 `

ÿ

𝑖R𝐼𝑗

𝑤𝑗
𝑖𝐿𝑖

¸

` 𝑏̃,

which follows as

𝑦𝑗 ě
ÿ

𝑖P𝐼𝑗

𝑤𝑗
𝑖𝑥𝑖 `

ÿ

𝑖R𝐼𝑗

𝑤𝑗
𝑖𝐿𝑖 ` 𝑏𝑗,

𝑤̃𝑗 ě 0 for each 𝑗, and we know that

𝑦 ě
𝑑
ÿ

𝑗“1

𝑤̃𝑗𝑦
𝑗
` 𝑏̃
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when 𝑧 “ 1.

Validity of (4.10b)

If 𝑧 “ 0, the inequality reduces to

𝑦 ď
𝑑
ÿ

𝑗“1

𝑤̃𝑗

˜

𝑦𝑗 ´
ÿ

𝑖P𝐼𝑗

𝑤𝑗
𝑖𝑥𝑖 ´

ÿ

𝑖R𝐼𝑗

𝑤𝑗
𝑖𝐿𝑖 ´ 𝑏𝑗

¸

,

which follows as 𝑦 “ 0, 𝑤̃𝑗, 𝑤
𝑗
𝑖 ě 0 for each 𝑖 and 𝑗, and 𝑦𝑗 ě

ř

𝑖P𝐼𝑗 𝑤
𝑗
𝑖𝑥𝑖`

ř

𝑖R𝐼𝑗 𝑤
𝑗
𝑖𝐿𝑖`

𝑏𝑗. If 𝑧 “ 1, then the inequality reduces to

𝑦 ď
𝑑
ÿ

𝑗“1

𝑤̃𝑗

˜

𝑦𝑗 `
ÿ

𝑖P𝐼𝑗

𝑤𝑗
𝑖 p𝑈𝑖 ´ 𝑥𝑖q

¸

` 𝑏̃,

which follows as 𝑥 ď 𝑈 , 𝑤̃𝑗, 𝑤
𝑗
𝑖 ě 0 for each 𝑖 and 𝑗, and

𝑦 ď
𝑑
ÿ

𝑗“1

𝑤̃𝑗𝑦
𝑗
` 𝑏̃

when 𝑧 “ 1.
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Chapter 5

Very small formulations and the

MIP-with-holes approach.

We have seen in the previous chapter that MIP formulations can be extremely suc-

cessful at modeling complex disjunctive constraints. Much of this thesis has focused

on finding strong formulations that are as small as possible, as size tends to correlate

quite strongly with computational efficacy. However, the existential results of Chap-

ter 3 suggest that so-called “logarithmic MIP formulations” are typically the smallest

possible: that is, any MIP formulation requires at least a logarithmic number of in-

teger variables, and typically a comparable number of general inequality constraints

as well.

It is worth reiterating that this overhead is not strictly necessary: for example,

there exist branch-and-bound methods that work directly on the disjunctions (e.g.

[14, 86]). However, much of the the success of MIP formulation approaches can

be attributed to the immense advances of MIP solvers over the past decades, as

their algorithms are now much more complex than a traditional branch-and-bound

approach. In particular, the development of a sophisticated theory on cutting planes

plays a crucial role in strengthening bounds and substantially reducing the amount of

enumeration required [24, 74]. These techniques can easily combine information from

multiple disjunctions and other constraints in the optimization problem to provide

tighter relaxations and shorten computation time.
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Although it is possible to adopt many of these same algorithmic techniques to the

constraint programming realm, this can require significant theoretical developments

even for very specific structures [44, 78], as well as substantial engineering effort to

implement these ideas in the solver. The goal of this chapter is to suggest a middle

ground: a slight modification of the traditional MIP framework that allows us to

bypass the logarithmic lower bound on formulation size, while maintaining many of

the advanced algorithmic techniques developed in the broad area of mixed-integer

programming.

Fortunately, there has recently been growing interest in studying the expressive

power and computational properties of generalizations of traditional MIP formula-

tions [9, 27, 64]. In particular, our work builds off of the ideas of Bonami et al. [27]

for handling holes in integer sets.

As a simple example, consider the disjunctive constraint 𝑥 P 𝐷 “ t1, 2, 4, 5u. This

constraint is nearly equivalent to a standard integrality constraint 𝑥 P r1, 5s X Z,

but with a hole in the domain at 3. A traditional MIP formulation for this might

introduce a binary variable 𝑧 and impose the constraints

𝑥 ě 1𝑧 ` 4p1´ 𝑧q (5.1a)

𝑥 ď 2𝑧 ` 5p1´ 𝑧q (5.1b)

p𝑥, 𝑧q P Zˆ t0, 1u. (5.1c)

Bonami et al. handle these holes directly in the original 𝑥 space, using wide split

disjunctions. Recall the standard variable branching approach: given a fractional

solution 𝑥̂ “ 2.5, round 𝑥̂ and branches on the valid disjunction 𝑥 ď 2 _ 𝑥 ě 3 to

separate this point. However, this leaves us no way to separate the hole at 𝑥̂ “ 3,

which is integer but not feasible for the original constraint. A natural way around

this is to impose a wide split disjunction of the form 𝑥 ď 2 _ 𝑥 ě 4 to separate 𝑥̂

from 𝐷. This is a straightforward change to the branch-and-bound algorithm in a

way that does not require any additional integer variables or constraints.

The crucial observation of Bonami et al. is that wide split disjunctions also readily
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admit standard cutting plane techniques, such as the intersection cut [4]. By combin-

ing the slightly modified branch-and-bound algorithm with cutting planes, Bonami et

al. observe a considerable computational speed-up compared to a “full” formulation

like (5.1) when optimizing over integer sets with holes.

This chapter extends the wide split idea to the mixed-integer setting with the aim

of constructing very small formulations for disjunctive constraints. Once we introduce

our MIP-with-holes framework, we will be able to leverage the geometric formulation

construction technique of Theorem 9 to great effect. In particular, we will be able to

offer the following very small formulations.

1. [Proposition 25] For any combinatorial disjunctive constraint with 𝑑 alter-

natives, we can produce an ideal MIP-with-holes formulation with two integer

variables, Op𝑑q general linear inequality constraints, Op|𝑉 |q variable bounds,

and one equation.

2. [Proposition 26] For the SOS2 constraint on 𝑛 “ 𝑑 ` 1 components, we can

produce an ideal MIP-with-holes formulation with two integer variables, four

general linear inequality constraints, Op𝑛q variable bounds, and one equation.

3. [Proposition 27] For a relaxation of the annulus as a partition of 𝑑 quadri-

laterals, we can produce an ideal MIP-with-holes formulation with two integer

variables, six general linear inequality constraints, Op𝑑q variable bounds, and

one equation.

In other words, our new approach allows us to construct ideal formulations for

any combinatorial disjunctive constraint with very few (i.e. constant) integer variables

and at most a linear number of general linear inequality constraints. Furthermore,

by taking advantage of structure, we can further reduce this to a constant number of

general inequality constraints for the SOS2 constraint and for the annulus.

However, a formulation with two integer variables implies a two-dimensional en-

coding, which cannot be hole-free if 𝑑 ą 4. Hence, the resulting formulation is not a

traditional MIP formulation. In the following section, we present a way to optimize
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over such representations in a branch-and-bound setting, using branching schemes

customized for a particular encoding. The branching schemes we present will use

combinations of variable branching, wide axis-aligned split disjunctions (or just wide

variable branching) a la Bonami et al. [27], and, in certain degenerate cases, general

two-term disjunctions (for which cut generation techniques have also been developed

in the literature [4, 12, 26, 79]). As a result, both standard and state-of-the-art cutting

plane technology can be deployed to strengthen the relaxations of our formulations.

5.1 Branching schemes and MIP-with-holes formu-

lations

We reiterate that traditional MIP formulations are useful because there exist algorithms–

and high-quality implementations of those algorithms–that are able to optimize over

these representations efficiently in practice. Roughly, these implementations typically

work by applying the branch-and-bound method [86], coupled with the judicious ap-

plication of cutting planes to strengthen the LP relaxation. In this section, we formal-

ize how our generalized notion of a formulation–the MIP-with-holes framework–fits

with this standard approach.

Definition 12. A branching scheme is a procedure that, given

• a polyhedron 𝑄 Ă R𝑟,

• an encoding 𝐻 Ă R𝑟, and

• a point 𝑧 P 𝑄,

either verifies that 𝑧 P 𝐻, or outputs two polyhedra 𝑄1, 𝑄2 Ă R𝑟 such that

• 𝑧 R 𝑄1 and 𝑧 R 𝑄2,

• 𝑄 Ě 𝑄1 Y𝑄2,

• 𝑄X𝐻 “ p𝑄1 X𝐻q Y p𝑄2 X𝐻q, and
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• 𝑄1 X𝑄2 “ H.

The first condition verifies that our branching renders our initial point infeasible.

The second guarantees that our feasible region does not expand after branching. The

third ensures that we do not lose any feasible points. The fourth tells us that our

branching scheme must partition all feasible points between the two subproblems.

We note that branching is described solely in terms of the integer variables 𝑧, in

contrast to a constraint branching approach [13, 45, 44, 78, 128], which would work

directly on the original variables 𝑥. However, branching schemes map back to our

original variable space in a straightforward way: if 𝑅 is the LP relaxation for our

formulation in p𝑥, 𝑧q-space, take 𝑄 “ Proj𝑧p𝑅q. Then we can construct 𝑄1 and 𝑄2

by adding linear inequalities to 𝑄. These inequalities can be trivially (zero) lifted to

inequalities for 𝑅 with support only on the 𝑧 variables, giving two polyhedra 𝑅1 and

𝑅2 in the original p𝑥, 𝑧q-space.

In the branch-and-bound setting, we will call 𝑅1 and 𝑅2 the LP relaxations for

the subproblems, and 𝑄1 and 𝑄2 the code relaxations for the subproblems. In the

case that an encoding 𝐻 has an associated branching scheme, we will say that the

corresponding formulation is a MIP-with-holes formulation to emphasize that this

is a strict generalization of traditional MIP formulations, and that MIP-with-holes

formulations retain many of the computational properties of traditional MIP formu-

lations relevant for branch-and-bound and branch-and-cut methods. Moreover, our

standard notions of formulation strength carry over directly.

Definition 13. Take a MIP-with-holes formulation 𝐹 “ t p𝑥, 𝑧q P 𝑅 | 𝑧 P 𝐻 u for

𝐷 Ă R𝑛, given by an LP relaxation 𝑅 and an encoding 𝐻. We say the formulation

is:

• sharp if Proj𝑥p𝑅q “ Convp𝐷q.

• ideal if Proj𝑧pextp𝑅qq “ 𝐻.

Although a branch-and-bound method using variable branching may produce ex-

ponentially many subproblems, it enjoys a finite termination guarantee when 𝑍p𝑅q

161



is finite. This is not necessarily the case for our more general setting. For example,

take 𝑄 “ r0, 1s and 𝐻 “ p0, 1q. Take the branching scheme that, given a fractional

point 0 ă 𝑧 ă 1, returns the code relaxations 𝑄1 “ r0, 𝑧{2s and 𝑄2 “ r1
2
p1 ` 𝑧q, 1s.

Then the infinite sequence of points p 1
2𝑘
q8𝑘“1 will not allow our branching scheme to

finitely terminate.

However, there is a straightforward sufficient condition that we may apply to

guarantee finite convergence.

Proposition 20. Take an encoding 𝐻 and some branching scheme such that each

subproblem code relaxation 𝑄1 and 𝑄2 is sharp, in the sense that 𝑄1 “ Convp𝑄1X𝐻q

and 𝑄2 “ Convp𝑄2 X 𝐻q. Then the branch-and-bound method using this branching

scheme is finitely terminating.

Proof. Consider the sharp polyhedra 𝑄1 at some stage in the branch-and-bound al-

gorithm; if the initial polyhedron 𝑄 is not sharp, apply the branching scheme once so

that all remaining subproblems have this property. Take 𝐻 1 “ 𝑄1 X𝐻 as the set of

codes feasible with respect to 𝑄1, and 𝑧 P 𝑄1 as the point provided to the branching

scheme. After applying the branching scheme, we produce two subproblems given by

the code relaxations 𝑄1 and 𝑄2. Take 𝐻1 “ 𝑄1 X𝐻 and 𝐻2 “ 𝑄2 X𝐻. See that as

𝑄1 is sharp, 𝑧 P 𝑄1 “ Convp𝐻 1q, and so 𝑧 can be expressed as a convex combination of

the elements in 𝐻 1. As 𝑧 R 𝑄1 “ Convp𝐻1q and 𝑧 R 𝑄2 “ Convp𝐻2q necessarily, and

𝐻1 Ď 𝐻 1 and 𝐻2 Ď 𝐻 1, it follows that 𝐻1 Ĺ 𝐻 1 and 𝐻2 Ĺ 𝐻 1. This shows that that

each subproblem strictly contracts 𝐻 1, and so after a finite number of iterations of

recursively applying the branching scheme, each subproblem will either be infeasible

(𝐻 1 “ H), or 𝐻 1 will be a singleton, in which case 𝑄1 “ 𝐻 1 from sharpness and the

branching scheme will verify that 𝑧 P 𝐻.
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5.2 Choices of encodings

5.2.1 The reflected binary Gray and zig-zag encodings

In Chapter 3.4 we introduced three possible choices of encodings: the reflected binary

Gray (𝐻Log
𝑑 ), binary zig-zag (𝐻ZZB

𝑑 ), and general integer zig-zag (𝐻ZZI
𝑑 ) encodings. In

Proposition 13 we showed that these are hole-free and in convex position, and so there-

fore lead to traditional MIP formulations. These three hole-free encodings give us an

opportunity to show how traditional variable branching fits into our branching scheme

framework. Take, for example, 𝐻 ” 𝐻ZZI
𝑑 , and consider some point 𝑧 P Convp𝐻q. If

𝑧 P Z𝑟, this verifies that 𝑧 P 𝐻 from the hole-free property. Otherwise, we can select

a component 𝑘 P J𝑟K which is fractional, i.e. 𝑧𝑘 R Z. Then the two subproblem code

relaxations are created by rounding this component: 𝑄1 “ t 𝑧 P 𝑄 | 𝑧𝑘 ď t𝑧𝑘u u and

𝑄2 “ t 𝑧 P 𝑄 | 𝑧𝑘 ě r𝑧𝑘s u.

5.2.2 The moment curve encoding

The 𝜂-dimensional moment curve is given by the function 𝑚𝜂p𝑡q “ p𝑡, 𝑡2, . . . , 𝑡𝜂q.

Given 𝑑pě 𝜂q ordered points 𝑡1 ă 𝑡2 ă ¨ ¨ ¨ ă 𝑡𝑑 on the real line, the corresponding

cyclic polytope is Convpt𝑚𝜂p𝑡𝑖qu
𝑑
𝑖“1q, a well-studied object [25, 140]. For our purposes,

we are interested in constructing encodings that lie along the two-dimensional moment

curve: 𝐻mc
𝑑

def
“ p𝑚2p𝑖qq

𝑑
𝑖“1. If 𝑑 ą 2, then this choice of encoding is not hole-free; for

example, 1
2
p𝑚2p1q `𝑚2p3qq “ p2, 5q P Convp𝐻mc

𝑑 qz𝐻
mc
𝑑 . However, the encoding is in

convex position, and it is straightforward to check if 𝑧 P 𝐻mc
𝑑 . We also see that a

linear inequality description of Ψ𝑑p𝑙, 𝑢q
def
“ Convpt 𝑧 P 𝐻mc

𝑑 | 𝑙 ď 𝑧1 ď 𝑢 uq is

𝑧2 ´ 𝑘2
ě p2𝑘 ` 1qp𝑧1 ´ 𝑘q @𝑘 P J𝑙, 𝑢´ 1K (5.2a)

p𝑢´ 𝑙qp𝑧2 ´ 𝑙2q ď p𝑢2
´ 𝑙2qp𝑧1 ´ 𝑙q. (5.2b)

Our branching scheme for the encoding 𝐻mc
𝑑 starts with a relaxation of the form

𝑄 “ Ψ𝑑pℓ, 𝑢q for some ℓ, 𝑢 P Z. Provided that 𝑧 R 𝐻mc
𝑑 , we create two subproblem

code relaxations of the form 𝑄1 “ Ψ𝑑pℓ, t𝑧1uq and 𝑄2 “ Ψ𝑑pt𝑧1u`1, 𝑢q. See Figure 5-1
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for an illustration of the branching.

We emphasize that while this branching scheme uses two-term disjunction branch-

ing, in nearly every case a (potentially wide) variable branching disjunction is also

valid. For example, the variable branching disjunction 𝑧1 ď 2_ 𝑧1 ě 3 is valid for the

point in the left side of Figure 5-1. Indeed, even if 𝑧 P Z𝑟, it will often be the case

that a wide variable branching disjunction can be applied. This will only fail in very

pathological cases: for example, that depicted in the right side of Figure 5-1. This

means that the branching portion of the algorithm can proceed using the branching

scheme described above, while the cut generation procedure can also use the valid

variable branching split disjunctions as well.

5.2.3 A more exotic encoding

Take some positive integer 𝑟, along with 𝑑 “ 4𝑟, and consider the encoding 𝐻ex
𝑑

def
“

pℎ𝑖q𝑑𝑖“1 where

ℎ4𝑘´3
“

ˆ

𝑘 ´ 𝑟 ´ 1,
1

2
p𝑘 ´ 1qp𝑘 ´ 2𝑟 ´ 2q

˙

(5.3a)

ℎ4𝑘´2
“

ˆ

𝑟 ´ 𝑘 ` 1,
1

2
p𝑘 ´ 1qp𝑘 ´ 2𝑟 ´ 2q

˙

(5.3b)

ℎ4𝑘´1
“

ˆ

𝑟 ´ 𝑘 ` 1,´
1

2
𝑘p𝑘 ´ 2𝑟 ´ 1q

˙

(5.3c)

ℎ4𝑘
“

ˆ

𝑘 ´ 𝑟,´
1

2
𝑘p𝑘 ´ 2𝑟 ´ 1q

˙

(5.3d)

for each 𝑘 P J𝑟K. We have depicted 𝐻ex
16 in Figure 5-2. Note that we have drawn in

dark lines the differences ℎ𝑖`1 ´ ℎ𝑖 between adjacent codes, to emphasize that these

directions are all axis-aligned. Additionally, this encoding is in convex position.

Proposition 21. For any 𝑟 P N, the encoding 𝐻ex
4𝑟 is in convex position.

Proof. The result for 𝑟 “ 1 follows from inspection, so presume that 𝑟 ą 1. For

each point ℎ𝑖, we propose an inequality 𝑐𝑖 ¨ 𝑧 ď 𝑏𝑖 that strictly separates ℎ𝑖 from the
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Figure 5-1: Illustration of the branching scheme for the moment curve encoding 𝐻mc
7 .

The original code relaxation in the 𝑧-space is shown in the dashed region, and those
for the two subproblems are shown in the darker shaded regions. The optimal solution
for the original LP relaxation is depicted with a solid dot. We show the branching
with a solution 𝑧 that is fractional (Left), and one where 𝑧 P Convp𝐻mc

7 qz𝐻
mc
7 and

yet there is no valid variable branching disjunction to separate the point (Right).

165



remaining codes in 𝐻ex
𝑑 . For each 𝑘 P J𝑟K, the coefficients are

𝑐4𝑘´3 “ p´p𝑟 ´ 𝑘 ` 2q ´ p𝑟 ´ 𝑘 ` 1q,´2q

𝑐4𝑘´2 “ pp𝑟 ´ 𝑘 ` 2q ` p𝑟 ´ 𝑘 ` 1q,´2q

𝑐4𝑘´1 “ pp𝑟 ´ 𝑘 ` 1q ` p𝑟 ´ 𝑘q, 2q

𝑐4𝑘 “ p´p𝑟 ´ 𝑘 ` 1q ´ p𝑟 ´ 𝑘q, 2q ,

where 𝑏𝑖 “ 𝑐𝑖 ¨ ℎ𝑖`4 for 𝑖 P J4K and 𝑏𝑖 “ 𝑐𝑖 ¨ ℎ𝑖´4 for 𝑖 P J5, 4𝑟K.

ℎ1 ℎ2

ℎ3ℎ4

ℎ5 ℎ6

ℎ7ℎ8

ℎ9 ℎ10

ℎ11ℎ12

ℎ13 ℎ14

ℎ15ℎ16

Figure 5-2: The exotic two-dimensional encoding 𝐻ex
16 .

The structure of this encoding also suggests a relatively simple branching scheme.

Given a point 𝑧 R 𝐻ex
𝑑 , we consider three cases, depicted in Figure 5-3. In the first

case, 𝑧1 R Z, and we perform standard variable branching: 𝑄1 “ t 𝑧 P 𝑄 | 𝑧1 ď t𝑧1u u
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and 𝑄2 “ t 𝑧 P 𝑄 | 𝑧1 ě r𝑧1s u. If 𝑧1 P Z, then we consider two other cases. Take 𝑌 “

t ℎ2 | ℎ P 𝐻
ex
𝑑 u as the set of all values the encoding takes in the second component,

𝑏 “ max t 𝑡 P 𝑌 | 𝑡 ă 𝑧2 u, and 𝑏 “ min t 𝑡 P 𝑌 | 𝑡 ą 𝑧2 u. Note that 𝑌 Ă Z. If 𝑧2 R 𝑌 ,

then we apply a wide variable branching of the form 𝑄1 “ t 𝑧 P 𝑄 | 𝑧2 ď 𝑏 u, and

𝑄2 “
 

𝑧 P 𝑄
ˇ

ˇ 𝑧2 ě 𝑏
(

.

The final case remains where 𝑧1 P Z, 𝑧2 P 𝑌 Ă Z, and yet 𝑧 R 𝐻ex
𝑑 . In

this case, we will branch on a two-term non-parallel disjunction. Take 𝑊 p𝑏q “

t ℎ P 𝐻ex
𝑑 | ℎ2 “ 𝑏 u. We take the nearest point to the northeast of 𝑧 as ℎ𝑁𝐸 P

𝑊 p𝑏q such that ℎ𝑁𝐸
1 ě maxℎP𝑊 p𝑏q ℎ1. Next, take the nearest point to the south-

west ℎ𝑆𝑊 P 𝑊 p𝑏q such that ℎ𝑆𝑊 ď maxℎP𝑊 p𝑏q ℎ1. Take the points directly to

the west and east of 𝑧, ℎ𝑊 , ℎ𝐸 P 𝑊 p𝑧2q (i.e. ℎ𝑊
1 ă ℎ𝐸

1 ), and we can express

the two-term non-parallel disjunction branching with two subproblem code relax-

ations as 𝑄1 “
 

𝑧 P 𝑄
ˇ

ˇ pℎ𝑁𝐸
1 ´ ℎ𝑊

1 qp𝑧2 ´ ℎ𝑊
2 q ě pℎ

𝑁𝐸
2 ´ ℎ𝑊

2 qp𝑧1 ´ ℎ𝑊
1 q

(

and 𝑄2 “
 

𝑧 P 𝑄
ˇ

ˇ pℎ𝑆𝑊
1 ´ ℎ𝐸

1 qp𝑧2 ´ ℎ𝐸
2 q ě pℎ

𝑆𝑊
2 ´ ℎ𝐸

2 qp𝑧1 ´ ℎ𝐸
1 q

(

.

We emphasize again that this general two-term disjunction branching only needs

to be deployed in pathological cases: namely, 𝑧 P Z2, with further restrictions on the

value for 𝑧. In all other cases, there exist valid split disjunctions (standard or wide)

which can be used to separate 𝑧, and for cut generation.

5.3 Very small MIP-with-holes formulations

We are now in a position to use our MIP-with-holes framework to produce very small

formulations for disjunctive constraints. We will make extensive use of the following

slight modification of Proposition 9, which allows us to construct MIP-with-holes

formulations using our geometric construction methods from Chapter 3.

Corollary 10. Take a family of sets 𝒫 “ p𝑃 𝑖q𝑑𝑖“1, the disjunctive set 𝐷 “
Ť𝑑

𝑖“1 𝑃
𝑖,

and an encoding 𝐻 “ pℎ𝑖q𝑑𝑖“1 that is in convex position with an accompanying branch-

ing scheme. Then:

• 𝐷 “
Ť𝑑

𝑖“1 SlicepEmp𝒫 , 𝐻q;ℎ𝑖q.
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Figure 5-3: Branching scheme for the exotic encoding 𝐻mc
16 when the LP optimal

solution for the integer variables 𝑧 has: (Left) 𝑧1 fractional, (Center) 𝑧1 P Z but
𝑧2 R 𝑌 “ t ℎ2 | ℎ P 𝐻

mc
16 u, and (Right) 𝑧1 P Z, 𝑧2 P 𝑌 , and yet 𝑧 R 𝐻mc

16 . The
relaxations for the two subproblems in each are the two shaded regions in each picture.
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• t p𝑥,𝑤, 𝑧q P 𝑄p𝒫 , 𝐻q | 𝑧 P 𝐻 u is a valid MIP-with-holes formulation for 𝐷.

5.3.1 A big-𝑀 MIP-with-holes formulation for any disjunctive

set

We start by offering a simple big-𝑀 MIP-with-holes formulation that works for any

disjunctive constraint. This formulation will not, in general, be ideal or sharp; how-

ever, it may be the case that it is simpler to construct, or substantially smaller, than

an ideal formulation built through the combinatorial disjunctive constraint approach.

It uses only two integer variables and a modest number of constraints.

Proposition 22. Take 𝒫 “ p𝑃 𝑖 “ t 𝑥 P R𝑛 | 𝐴𝑖𝑥 ď 𝑏𝑖 uq𝑑𝑖“1 as a family of bounded

polyhedra, where 𝐴𝑖 P R𝑚𝑖ˆ𝑛 and 𝑏𝑖 P R𝑚𝑖. Fix constants 𝑀 𝑖 P R𝑚𝑖 for each 𝑖 P J𝑑K

such that 𝑀 𝑖
𝑠 ě max𝑥P

Ť

𝑘‰𝑖 𝑃
𝑘 𝐴𝑘

𝑠𝑥 for each 𝑠 P J𝑚𝑖K. Then p𝑥, 𝑧q P Emp𝒫 , 𝐻mc
𝑑 q if and

only if

𝐴𝑖𝑥 ď 𝑏𝑖 ` p𝑀 𝑖
´ 𝑏𝑖q

`

𝑖2 ´ 2𝑖𝑧1 ` 𝑧2
˘

@𝑖 P J𝑑K (5.4a)

𝑧 P 𝐻mc
𝑑 . (5.4b)

Additionally, we can construct a LP relaxation for the corresponding MIP-with-holes

formulation of
Ť𝑑

𝑖“1 𝑃
𝑖 by replacing (5.4b) with the constraint 𝑧 P Ψ𝑑p1, 𝑑q.

Proof. Consider the constraints (5.4a), given 𝑧 “ p𝑖, 𝑖2q P 𝐻mc
𝑑 . The 𝑗-th set of

constraints in (5.4a) simplifies to

𝐴𝑗𝑥 ď

$

’

&

’

%

𝑏𝑗 ` p𝑀 𝑗 ´ 𝑏𝑗qp𝑖2 ´ 2𝑖2 ` 𝑖2q “ 𝑏𝑖 𝑗 “ 𝑖

𝑏𝑗 ` p𝑀 𝑗 ´ 𝑏𝑗qp𝑗2 ´ 2𝑗 ¨ 𝑖` 𝑖2q ” 𝛼𝑗 o.w.

As 𝑗2 ´ 2𝑖 ¨ 𝑗 ` 𝑖2 “ p𝑖 ´ 𝑗q2 ě 1 for each 𝑖, 𝑗 P Z with 𝑖 ‰ 𝑗, we have that 𝛼 ě

𝑀 𝑗. Therefore, given 𝑧 “ p𝑖, 𝑖2q P 𝐻mc
𝑑 , 𝑥 satisfies these constraints if and only if

𝑥 P 𝑃 𝑖.

We compare this formulation against a traditional big-𝑀 MIP formulation [130].
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Both require
ř𝑑

𝑖“1𝑚𝑖 general inequality constraints, along with Op𝑑q additional con-

straints to describe either Ψ𝑑p1, 𝑑q or variable bounds on binary variables. However,

formulation (5.4) requires only two integer variables, compared to the rlog2p𝑑qs binary

integer variables needed for a traditional big-𝑀 MIP formulation.

5.3.2 A very small formulation for the SOS1 constraint

We can also present a simple ideal MIP-with-holes formulation for the SOS1 con-

straint. Using the moment curve encoding, we may construct a very small formulation

with only two integer variables and no general inequality constraints.

Proposition 23. Take 𝒯 SOS1
𝑑 “ pt𝑖uq𝑑𝑖“1 as the SOS1 constraint, and the two-dimensional

moment curve encoding 𝐻𝑚𝑐
𝑑 . Then 𝑄p𝒫p𝒯 SOS1

𝑑 q, 𝐻mc
𝑑 q is

#˜

𝜆,
𝑑
ÿ

𝑖“1

𝑖𝜆𝑖,
𝑑
ÿ

𝑖“1

𝑖2𝜆𝑖

¸
ˇ

ˇ

ˇ

ˇ

ˇ

𝜆 P ∆𝑑

+

. (5.5)

Proof. Immediate, as Emp𝒫p𝒯 q, 𝐻𝑀𝐶
𝑑 q “ tpe𝑖, 𝑖, 𝑖2qu𝑑𝑖“1.

We see a stark contrast here with the negative results of Proposition 12, which

imply that any MIP formulation for the SOS1 constraint must have at least rlog2p𝑛qs

integer variables. Additionally, we notice that this MIP-with-holes formulation also

enjoys favorable incremental branching properties akin to traditional SOS1 branch-

ing [13]. Given 𝑑 distinct points t𝑣𝑖u𝑑𝑖“1 Ă R, consider the simple optimization prob-

lem proposed by Yıldız and Vielma:

min
𝑥,𝑡,𝜆

𝑡 (5.6a)

s.t. 𝑡 ě 𝑥 (5.6b)

𝑡 ě ´𝑥 (5.6c)

𝑥 “
𝑑
ÿ

𝑖“1

𝑣𝑖𝜆𝑖 (5.6d)

𝜆 P CDCp𝒯 SOS1
𝑑 q. (5.6e)
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The authors show [139, Proposition 2.1] that an incremental, logarithmic, and unary

formulation for (5.6e) can be solved by branching at most once, rlog2p𝑑qs, or r𝑑{2s

times, respectively. It is not hard to see that the MIP-with-holes formulation (5.5),

coupled with the moment curve branching scheme, also requires at most one branch

to solve to optimality.

5.3.3 Very small formulations for general combinatorial dis-

junctive constraints

We now return to geometric construction of Theorem 9, which allows us to state a gen-

eral result: given any combinatorial disjunctive constraint and any two-dimensional

encoding in convex position, we can provide an explicit description for a very small

ideal MIP-with holes formulation.

Proposition 24. Take 𝒯 “ p𝑇 𝑖 Ď 𝑉 q𝑑𝑖“1 and let 𝐻 “ pℎ𝑖q𝑑𝑖“1 Ă R2 be any two-

dimensional encoding in convex position. Take 𝑏𝑖,𝑗 “ p𝑐𝑖,𝑗2 ,´𝑐𝑖,𝑗1 q for each t𝑖, 𝑗u P r𝑑s2.

Then p𝜆, 𝑧q P 𝑄p𝒫p𝒯 q, 𝐻q if and only if

ÿ

𝑣P𝑉

min
𝑠:𝑣P𝑇 𝑠

t𝑏𝑖,𝑗 ¨ ℎ𝑠
u𝜆𝑣 ď 𝑏𝑖,𝑗 ¨ 𝑧 ď

ÿ

𝑣P𝑉

max
𝑠:𝑣P𝑇 𝑠

t𝑏𝑖,𝑗 ¨ ℎ𝑠
u𝜆𝑣 @t𝑖, 𝑗u P r𝑑s2 (5.7a)

p𝜆, 𝑧q P ∆𝑉
ˆ R2. (5.7b)

Proof. The result follows from Theorem 9. Assume for simplicity that 𝑉 “ J𝑛K. If Υ

is not connected, we may introduce an artificial 𝜆𝑛`1 variable to the constraint, and

append it 𝑇 Ð 𝑇 Y t𝑛` 1u to each set 𝑇 P 𝒯 . The corresponding edge set Υ1 “ r𝑑s2

is now connected, and we can simply impose that 𝜆𝑛`1 ď 0 to recover our original

constraint.

First, we observe that 𝑏𝑖,𝑗 ¨ 𝑐𝑖,𝑗 “ 0, and so as ℒ is two-dimensional, 𝑀p𝑏𝑖,𝑗;ℒq is

the hyperplane spanned by 𝑐𝑖,𝑗. Furthermore, Υ “ t t𝑖, 𝑗u P r𝑑s2 | 𝑇 𝑖 X 𝑇 𝑗 ‰ H u Ď

Υ1 “ r𝑑s2, and so (5.7a) will recover all the inequalities in (3.2a). It just remains

to show that any inequality given by t𝑖, 𝑗u P Υ1zΥ is valid for 𝑄p𝒫p𝒯 q, 𝐻q. To

see this, consider any p𝜆, 𝑧q “ pe𝑤, ℎ𝑢q P Emp𝒫p𝒯 q, 𝐻q; that is, 𝑤 P 𝑇 𝑢. Then
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ř𝑛
𝑣“1 min𝑠:𝑣P𝑇 𝑠t𝑏𝑖,𝑗 ¨ℎ𝑠u𝜆𝑣 “ min𝑠:𝑤P𝑇 𝑠t𝑏𝑖,𝑗 ¨ℎ𝑠u ď 𝑏𝑖,𝑗 ¨ℎ𝑢, as 𝑏𝑖,𝑗 ¨ℎ𝑢 is one of the terms

appearing in the minimization. A similar argument holds for the other side of the

constraint.

This result implies a quadratic Op𝑑2q upper bound on the number of general

inequality constraints needed to construct an ideal MIP-with-holes formulations for

any combinatorial disjunctive constraint, regardless of the choice of encoding. This

is in sharp contrast to the traditional MIP setting, where binary encodings can–and

typically do–lead to an exponential number of facets [131].

Furthermore, this can be strengthened to an Op𝑑q upper bound on the number of

general inequality constraints when we use the moment curve encoding.

Proposition 25. Take 𝒯 “ p𝑇 𝑖 Ď 𝑉 q𝑑𝑖“1. Then p𝜆, 𝑧q P 𝑄p𝒫p𝒯 q, 𝐻mc
𝑑 q if and only if

ÿ

𝑣P𝑉

min
𝑠:𝑣P𝑇 𝑠

t𝑠p𝑡´ 𝑠qu𝜆𝑣 ď 𝑡𝑧1 ´ 𝑧2 ď
ÿ

𝑣P𝑉

max
𝑠:𝑣P𝑇 𝑠

t𝑠p𝑡´ 𝑠qu𝜆𝑣 @𝑡 P J3, 2𝑑´ 1K (5.8a)

p𝜆, 𝑧q P ∆𝑉
ˆ R2. (5.8b)

Proof. Take any t𝑖, 𝑗u P r𝑑s2. Observe that

𝑐𝑖,𝑗 ” ℎ𝑗
´ ℎ𝑖

“ p𝑗 ´ 𝑖, 𝑗2 ´ 𝑖2q “ p𝑗 ´ 𝑖q ¨ p1, 𝑖` 𝑗q,

and that 3 ď 𝑖`𝑗 ď 2𝑑´1. Therefore, for each t𝑖, 𝑗u P r𝑑s2, there is some 𝑡 P J3, 2𝑑´1K

and some 𝛼 ą 0 such that 𝑐𝑖,𝑗 “ 𝛼 ¨ p1, 𝑡q. Therefore, our representation here is

equivalent to that in Proposition 24, up to constant nonzero scalings of some of the

inequalities.

As a concrete example, consider the grid triangulation in Figure 5-4. The sets

𝒯 “ p𝑇 𝑖q8𝑖“1 correspond to each of the triangles, where

𝑇 1
“ t1, 2, 4u, 𝑇 2

“ t5, 6, 8u, 𝑇 3
“ t3, 5, 6u, 𝑇 4

“ t4, 5, 7u,

𝑇 5
“ t5, 7, 8u, 𝑇 6

“ t2, 3, 5u, 𝑇 7
“ t2, 4, 5u, 𝑇 8

“ t6, 8, 9u.
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Then a description for 𝑄p𝒫p𝒯 q, 𝐻mc
8 q is:

4𝜆1 ` 4𝜆2 ` 6𝜆3 ` 4𝜆4 ` 6𝜆5 ` 6𝜆6 ` 4𝜆7 ` 6𝜆8 ´ 24𝜆9 ě 5𝑧1 ´ 𝑧2

6𝜆1 ` 6𝜆2 ` 12𝜆3 ` 12𝜆4 ` 12𝜆5 ` 12𝜆6 ` 12𝜆7 ` 10𝜆8 ´ 8𝜆9 ě 7𝑧1 ´ 𝑧2

7𝜆1 ` 7𝜆2 ` 12𝜆3 ` 7𝜆4 ` 7𝜆5 ` 0𝜆6 ` 15𝜆7 ` 0𝜆8 ` 0𝜆9 ď 8𝑧1 ´ 𝑧2

8𝜆1 ` 8𝜆2 ` 18𝜆3 ` 8𝜆4 ` 14𝜆5 ` 8𝜆6 ` 20𝜆7 ` 8𝜆8 ` 8𝜆9 ď 9𝑧1 ´ 𝑧2

8𝜆1 ` 18𝜆2 ` 18𝜆3 ` 20𝜆4 ` 20𝜆5 ` 18𝜆6 ` 20𝜆7 ` 20𝜆8 ` 8𝜆9 ě 9𝑧1 ´ 𝑧2

9𝜆1 ` 9𝜆2 ` 21𝜆3 ` 9𝜆4 ` 16𝜆5 ` 16𝜆6 ` 24𝜆7 ` 16𝜆8 ` 16𝜆9 ď 10𝑧1 ´ 𝑧2

10𝜆1 ` 30𝜆2 ` 30𝜆3 ` 28𝜆4 ` 30𝜆5 ` 24𝜆6 ` 30𝜆7 ` 30𝜆8 ` 24𝜆9 ě 11𝑧1 ´ 𝑧2

12𝜆1 ` 42𝜆2 ` 42𝜆3 ` 42𝜆4 ` 42𝜆5 ` 40𝜆6 ` 40𝜆7 ` 40𝜆8 ` 40𝜆9 ě 13𝑧1 ´ 𝑧2

p𝜆, 𝑧q P ∆9
ˆ R2.

1 2 3

4 5 6

7 8 9

Figure 5-4: A grid triangulation with 𝑑 “ 8 triangles. The nodes, or vertices for the
triangles, are numbered.

The construction of Proposition 25 gives these 8 facet-inducing general inequality

constraints, along with 16 others that are valid but not facet-inducing for 𝑄p𝒫p𝒯 q, 𝐻mc
8 q,

and therefore are not necessary. In contrast, any ideal binary MIP formulation re-

quires three integer variables and at least 9 general inequality constraints [66].

We can also apply Proposition 25 to produce an ideal MIP-with-holes formulation

for the SOS2 constraint with a linear number of inequality constraints and only two

integer variables. Additionally, as we see in Figure 5-5, the moment curve branching

scheme of Chapter 5.2.2 induces the same hereditarily sharp, incremental branching of

the Inc formulation we observed in Chapter 4.1.2. Indeed, branching on the moment

curve formulation (5.8) by imposing Ψ𝑑p1, 𝑘q (resp. Ψ𝑑p𝑘 ` 1, 𝑑q) is equivalent to

173



variable branching with the Inc formulation on 𝑧𝑘 ď 0 (resp. 𝑧𝑘 ě 1).

As we see in Figure 5-6, even variable branching on the moment curve formulation

(5.8) for the SOS2 constraint induces the incremental branching behavior, though we

do lose hereditary sharpness. Qualitatively, the branching is slightly weaker than the

branching of both the ZZI and the Inc formulation as observed in Chapter 4.1.2, and

there will be pathological cases in which variable branching of this type is not possible.

However, it is noteworthy that, in nearly every case, we can induce incremental

branching using only two integer variables and variable branching.

5.3.4 A very small formulation for the SOS2 constraint

We can further sharpen our general results in Proposition 24–which apply to any

combinatorial disjunctive constraint–if we take advantage of structure in 𝒯 and choose

an encoding tailored for a particular constraint. For example, the exotic encoding 𝐻ex
𝑑

was specifically designed for the SOS2 constraint 𝒯 SOS2
𝑑 ” pt𝑖, 𝑖` 1uq𝑑𝑖“1. Recall that

the difference directions we need to compute for Theorem 9 are all differences between

adjacent codes: 𝐶 “ tℎ𝑖`1 ´ ℎ𝑖u
𝑑´1
𝑖“1 . Referring back to Figure 5-2, we see that these

difference directions are all axis-aligned in the plane. That is, there are only two

hyperplanes we need to consider, which in turn leads to a formulation with very few

inequality constraints.

Proposition 26. Take 𝑑 “ 4𝑟 for some 𝑟 P N, and label 𝐻ex
𝑑 “ pℎ𝑖q𝑑𝑖“1 Ă R2. Then

p𝜆, 𝑦q P 𝑄p𝒫p𝒯 SOS2
𝑑 q, 𝐻ex

𝑑 q if and only if

ℎ1
𝑘𝜆1 `

𝑑
ÿ

𝑖“2

mintℎ𝑖´1
𝑘 , ℎ𝑖

𝑘u𝜆𝑖 ` ℎ𝑑
𝑘𝜆𝑑`1 ď 𝑧𝑘 @𝑘 P J2K (5.9a)

ℎ1
𝑘𝜆1 `

𝑑
ÿ

𝑖“2

maxtℎ𝑖´1
𝑘 , ℎ𝑖

𝑘u𝜆𝑖 ` ℎ𝑑
𝑘𝜆𝑑`1 ě 𝑧𝑘 @𝑘 P J2K (5.9b)

p𝜆, 𝑧q P ∆𝑑`1
ˆ R2. (5.9c)

Proof. Apply Theorem 9, after observing that 𝐶 “ tℎ𝑖`1 ´ ℎ𝑖u
𝑑´1
𝑖“1 Ď t˘e1,˘e2u,

and so taking the hyperplanes given by the normal directions 𝑏1 “ e1 and 𝑏2 “ e2
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𝑥

𝑧

𝑥

𝑧

𝑥

𝑧

𝑥

𝑧

𝑥

𝑧

𝑥

𝑧

Figure 5-5: The LP relaxation of the moment curve formulation (5.8) applied to
the the piecewise linear function (1.11) projected onto p𝑥, 𝑦q-space, after (Top Left)
branching on Ψ4p1, 1q, (Top Right) branching on Ψ4p2, 4q; (Center Left) branching
on Ψ4p1, 2q, (Center Right) branching on Ψ4p3, 4q; (Bottom Left) branching on
Ψ4p1, 3q, and (Bottom Right) branching on Ψ4p4, 4q.
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𝑧
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𝑧

𝑥

𝑧
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𝑧
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𝑧

𝑥
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Figure 5-6: The LP relaxation of the moment curve formulation (5.8) projected onto
p𝑥, 𝑦q-space, after (Top Left) down-branching 𝑧1 ď 1, (Top Right) up-branching
𝑧1 ě 2; (Center Left) down-branching 𝑧1 ď 2, (Center Right) up-branching
𝑧1 ě 3; (Bottom Left) down-branching 𝑧1 ď 3, and (Bottom Right) up-branching
𝑧1 ě 4.
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suffices.

As a concrete example, formulation (5.9) for the SOS2(17) constraint is

´4𝜆1 ´ 4𝜆2 ` 4𝜆3 ´ 3𝜆4 ´ 3𝜆5 ´ 3𝜆6 ` 3𝜆7 ´ 2𝜆8 ´ 2𝜆9`

´2𝜆10 ` 2𝜆11 ´ 1𝜆12 ´ 1𝜆13 ´ 1𝜆14 ` 1𝜆15 ` 0𝜆16 ` 0𝜆17 ď 𝑧1 (5.10a)

´4𝜆1 ` 4𝜆2 ` 4𝜆3 ` 4𝜆4 ´ 3𝜆5 ` 3𝜆6 ` 3𝜆7 ` 3𝜆8 ´ 2𝜆9`

2𝜆10 ` 2𝜆11 ` 2𝜆12 ´ 1𝜆13 ` 1𝜆14 ` 1𝜆15 ` 1𝜆16 ` 0𝜆17 ě 𝑧1 (5.10b)

0𝜆1 ` 0𝜆2 ` 0𝜆3 ` 4𝜆4 ´ 4𝜆5 ´ 4𝜆6 ´ 4𝜆7 ` 7𝜆8 ´ 7𝜆9`

´7𝜆10 ´ 7𝜆11 ` 9𝜆12 ´ 9𝜆13 ´ 9𝜆14 ´ 9𝜆15 ` 10𝜆16 ` 10𝜆17 ď 𝑧2 (5.10c)

0𝜆1 ` 0𝜆2 ` 4𝜆3 ` 4𝜆4 ` 4𝜆5 ´ 4𝜆6 ` 7𝜆7 ` 7𝜆8 ` 7𝜆9`

´7𝜆10 ` 9𝜆11 ` 9𝜆12 ` 9𝜆13 ´ 9𝜆14 ` 10𝜆15 ` 10𝜆16 ` 10𝜆17 ď 𝑧2 (5.10d)

p𝜆, 𝑧q P ∆17
ˆ R2. (5.10e)

This MIP-with-holes formulation is ideal and uses only two integer variables, along

with only four general integer inequality constraints. Indeed, this size is independent

of 𝑑. We contrast this with the logarithmic formulations discussed in Chapter 3

(i.e. Log, LogIB, ZZB, and ZZI), which are also ideal but require 4 integer variables

and 8 general inequality constraints for SOS2(17). Moreover, this size will grow

logarithmically in 𝑑.

In Figure 5-7, we explore the branching behavior of very small MIP-with-holes

formulation (5.9) when 𝑑 “ 4 by depicting the four possibilities of variable branching

on 𝑧1. We observe that the branching is neither hereditarily sharp, nor does it have

the incremental branching property. However, we note that its branching appears to

be only slightly inferior than that of the Log/LogIB formulations, which enjoy excel-

lent computational results due to their size and strength, in spite of their branching

behavior. In contrast, the MIP-with-holes formulation (5.9) is just as strong and

substantially smaller.
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Figure 5-7: The LP relaxation of the very small SOS2 MIP-with-holes formulation
(5.9) projected onto p𝑥, 𝑦q-space, after (Top Left) down-branching 𝑧1 ď ´1, (Top
Right) up-branching 𝑧1 ě 0; (Center Left) down-branching 𝑧1 ď 0, and (Center
Right) up-branching 𝑧1 ě 1.

178



5.3.5 A very small formulation for the annulus

We close the thesis by presenting a very small MIP-with-holes formulation for the

annulus. This formulation also uses the exotic encoding 𝐻ex
𝑑 , and requires only a

constant number of integer variables and general inequality constraints.

Proposition 27. Take 𝐻ex
𝑑 “ pℎ𝑖q𝑑𝑖“1, along with ℎ𝑑`1 ” ℎ1 for notational conve-

nience. Then p𝜆, 𝑧q P 𝑄p𝒫p𝒯 ann
𝑑 q, 𝐻ex

𝑑 q if and only if

𝑑
ÿ

𝑖“1

mintℎ𝑖
𝑘, ℎ

𝑖`1
𝑘 up𝜆2𝑖´1 ` 𝜆2𝑖q ď 𝑧𝑘 @𝑘 P J2K (5.11a)

𝑑
ÿ

𝑖“1

maxtℎ𝑖
𝑘, ℎ

𝑖`1
𝑘 up𝜆2𝑖´1 ` 𝜆2𝑖q ě 𝑧𝑘 @𝑘 P J2K (5.11b)

𝑑
ÿ

𝑖“1

mint𝑤 ¨ ℎ𝑖, 𝑤 ¨ ℎ𝑖`1
up𝜆2𝑖´1 ` 𝜆2𝑖q ď 𝑤 ¨ 𝑧 (5.11c)

𝑑
ÿ

𝑖“1

maxt𝑤 ¨ ℎ𝑖, 𝑤 ¨ ℎ𝑖`1
up𝜆2𝑖´1 ` 𝜆2𝑖q ě 𝑤 ¨ 𝑧 (5.11d)

p𝜆, 𝑧q P ∆2𝑑
ˆ R2, (5.11e)

where 𝑤 “ pℎ𝑑
2 ´ ℎ1

2, ℎ
1
1 ´ ℎ𝑑

1q.

Proof. As Υ “ t𝑖, 𝑖 ` 1u𝑑´1𝑖“1 Y t1, 𝑑u, then 𝐶 Ď t˘e1,˘e2, ℎ𝑑 ´ ℎ1u, and the result

immediately follows from Theorem 9 as 𝑤 ¨ pℎ𝑑 ´ ℎ1q “ 0.

In Figure 5-8, we depict the branching behavior of formulation (5.11) for the

annulus with 𝑑 “ 8 quadrilateral pieces.
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Figure 5-8: LP relaxation of the exotic formulation (5.11) (shaded) after (First row)
down-branching 𝑧1 ď ´2 or up-branching 𝑧1 ě ´1; (Second row) down-branching
𝑧1 ď ´1 or up-branching 𝑧1 ě 0; (Third row) down-branching 𝑧1 ď 0 or up-
branching 𝑧1 ě 1; or (Last row) down-branching 𝑧1 ď 1 or up-branching 𝑧1 ě 2.
The quadrilaterals that are feasible for each subproblem are crosshatched.
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Appendix A

The logarithmic formulation of

Misener et al. [106] is not ideal

We show that the logarithmic formulation (16) from Misener et al. [106] is not, in

general, ideal. Using their notation, we take 𝑁𝑃 “ 3, 𝑥𝐿 “ 𝑦𝐿 “ 0, and 𝑥𝑈 “ 𝑦𝑈 “ 3
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(and so 𝑎 “ 1). Then formulation (16) is

𝜆1 ` 2𝜆2 ď 𝑥 (A.1a)

𝑥 ď 1` 𝜆1 ` 2𝜆2 (A.1b)

1` 𝜆1 ` 2𝜆2 ď 3 (A.1c)

∆𝑦1 ď 3𝜆1 (A.1d)

∆𝑦2 ď 3𝜆2 (A.1e)

∆𝑦1 “ 𝑦 ´ 𝑠1 (A.1f)

∆𝑦2 “ 𝑦 ´ 𝑠2 (A.1g)

𝑠1 ď 3p1´ 𝜆1q (A.1h)

𝑠2 ď 3p1´ 𝜆2q (A.1i)

𝑧 ě ∆𝑦1 ` 2∆𝑦2 (A.1j)

𝑧 ě 3𝑥` p𝑦 ´ 3q ` p∆𝑦1 ´ 3𝜆1q ` 2p∆𝑦2 ´ 3𝜆2q (A.1k)

𝑧 ď 𝑦 `∆𝑦1 ` 2∆𝑦2 (A.1l)

𝑧 ď 3𝑥` p∆𝑦1 ´ 3𝜆1q ` 2p∆𝑦2 ´ 3𝜆2q (A.1m)

𝜆 P t0, 1u2 (A.1n)

∆𝑦 P r0, 3s2 (A.1o)

𝑠 P r0, 3s2 (A.1p)

p𝑥, 𝑦q P r0, 3s ˆ r0, 3s. (A.1q)

The feasible point for the relaxation 𝑥 “ 3, 𝑦 “ 3, 𝑧 “ 9, 𝜆 “ p1, 0.5q, ∆𝑦 “ p3, 1.5q,

and 𝑠 “ p0, 1.5q is a fractional extreme point, showing that the formulation is not

ideal. Indeed, it satisfies at equality the set of linear independent constraints of the

relaxation given by 𝑥 ď 3, 𝑦 ď 3, 𝜆1 ď 1, ∆𝑦1 ď 3, 𝑠1 ě 0, (A.1b), (A.1e), (A.1g) and

(A.1k).
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Appendix B

Constructing a pairwise

IB-representable partition of the

plane

We outline the operations that can transform an arbitrary partition of Ω Ă R2 into

one that conforms with the conditions of Theorem 2. In particular, the partition will

have no “internal vertices,” and no independent sets 𝑇 in 𝐻𝑐
𝒯 with |𝑇 | ą 2, where

𝑇 is infeasible for CDCp𝒯 q. We provide a sketch of the argument, accompanied by

pictures in Figure B-1.

First, we see how we can remove internal vertices. Consider some 𝑣 P 𝑉 that

is internal to 𝑃 𝑖1 (i.e. 𝑣 P 𝑃 𝑖1 and 𝑣 R extp𝑃 𝑖1q). We may split 𝑃 𝑖1 in two along

𝑃 𝑖1,1Y𝑃 𝑖1,2 “ 𝑃 𝑖1 in such a way that 𝑃 𝑖1,1Y𝑃 𝑖1,2Y

´

Ť

𝑖PJ𝑘Kzt𝑖1u 𝑃
𝑖
¯

, without introducing

any additional internal vertices. See the Left column of Figure B-1 for an illustration.

Repeating this procedure will yield a valid polygonal partition of Ω with no internal

vertices. We note that this implies that, for any bounded nonconvex region Ω Ă R2,

there exists a polyhedral complex whose union is Ω.

Secondly, we turn our attention to minimal infeasible sets 𝑇 Ď 𝑉 with cardinality

|𝑇 | “ 3. If Convp𝑇 q Ď Ω, we may append an additional set 𝑃 “ Convp𝑇 q to our parti-

tion, and augment 𝑃 𝑖 Ð Convpextp𝑃 qz𝑆q for each 𝑖, where 𝑆 “ t 𝑣 P 𝑉 | 𝑣 P intpConvp𝑇 qq u.

See the Center column of Figure B-1.
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Figure B-1: The joining or splitting which transform a polygonal partition into one
adhering to the conditions in Theorem 2 (before on Top, after on Bottom): (Left)
splitting along an internal vertex, (Center) filling in a minimal infeasible set 𝑇 of
cardinality three with Convp𝑇 q Ă Ω, and (Right) introducing an artificial vertex to
remove a minimal infeasible set 𝑇 of cardinality three with Convp𝑇 q Ć Ω.
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If Convp𝑇 q Ę Ω, label 𝑇 “ t𝑡1, 𝑡2, 𝑡3u. It must be that one pair in 𝑇 , w.l.o.g.

p𝑡1, 𝑡2q, induces an edge on the boundary of Ω. Artificially introduce a vertex 𝑣 P

intpConvpt𝑡1, 𝑡2uqq. Now t𝑡1, 𝑡2u is an infeasible set, and so 𝑇 is no longer a minimal

infeasible set w.r.t. inclusion. See the Right column of Figure B-1.

185



186



Appendix C

8-segment piecewise linear function

formulation branching

Consider the univariate piecewise linear function 𝑓 : r0, 8s Ñ R given by

𝑓p𝑥q “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

8𝑥 0 ď 𝑥 ď 1

7𝑥` 1 1 ď 𝑥 ď 2

6𝑥` 3 2 ď 𝑥 ď 3

5𝑥` 6 3 ď 𝑥 ď 4

4𝑥` 10 4 ď 𝑥 ď 5

3𝑥` 15 5 ď 𝑥 ď 6

2𝑥` 21 6 ď 𝑥 ď 7

𝑥` 28 7 ď 𝑥 ď 8.

(C.1)
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The corresponding LogIB/Log formulation is

𝑥 “ 𝜆2 ` 2𝜆3 ` 3𝜆4 ` 4𝜆5 ` 5𝜆6 ` 6𝜆7 ` 7𝜆8 ` 8𝜆9 (C.2a)

𝑦 “ 8𝜆2 ` 15𝜆3 ` 21𝜆4 ` 26𝜆5 ` 30𝜆6 ` 33𝜆7 ` 35𝜆8 ` 36𝜆9 (C.2b)

𝑧1 ě 𝜆3 ` 𝜆7 (C.2c)

𝑧1 ď 𝜆2 ` 𝜆3 ` 𝜆4 ` 𝜆6 ` 𝜆7 ` 𝜆8 (C.2d)

𝑧2 ě 𝜆4 ` 𝜆5 ` 𝜆6 (C.2e)

𝑧2 ď 𝜆3 ` 𝜆4 ` 𝜆5 ` 𝜆6 ` 𝜆7 (C.2f)

𝑧3 ě 𝜆6 ` 𝜆7 ` 𝜆8 ` 𝜆9 (C.2g)

𝑧3 ď 𝜆5 ` 𝜆6 ` 𝜆7 ` 𝜆8 ` 𝜆9 (C.2h)

p𝜆, 𝑧q P ∆9
ˆ t0, 1u3, (C.2i)

and the corresponding ZZI formulation is

𝑥 “ 𝜆2 ` 2𝜆3 ` 3𝜆4 ` 4𝜆5 ` 5𝜆6 ` 6𝜆7 ` 7𝜆8 ` 8𝜆9 (C.3a)

𝑦 “ 8𝜆2 ` 15𝜆3 ` 21𝜆4 ` 26𝜆5 ` 30𝜆6 ` 33𝜆7 ` 35𝜆8 ` 36𝜆9 (C.3b)

𝑧1 ě 𝜆3 ` 𝜆4 ` 2𝜆5 ` 2𝜆6 ` 3𝜆7 ` 3𝜆8 ` 4𝜆9 (C.3c)

𝑧1 ď 𝜆2 ` 𝜆3 ` 2𝜆4 ` 2𝜆5 ` 3𝜆6 ` 3𝜆7 ` 4𝜆8 ` 4𝜆9 (C.3d)

𝑧2 ě 𝜆4 ` 𝜆5 ` 𝜆6 ` 𝜆7 ` 2𝜆8 ` 2𝜆9 (C.3e)

𝑧2 ď 𝜆3 ` 𝜆4 ` 𝜆5 ` 𝜆6 ` 2𝜆7 ` 2𝜆8 ` 2𝜆9 (C.3f)

𝑧3 ě 𝜆6 ` 𝜆7 ` 𝜆8 ` 𝜆9 (C.3g)

𝑧3 ď 𝜆5 ` 𝜆6 ` 𝜆7 ` 𝜆8 ` 𝜆9 (C.3h)

p𝜆, 𝑧q P ∆9
ˆ t0, 1, 2, 3, 4u ˆ t0, 1, 2u ˆ t0, 1u (C.3i)

In Table C.1, we show statistics for the relaxations of the both. We observe that the

ZZI formulation yields more balanced branching, with the volume and strengthened

proportion more equal between the resulting two branches.
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Statistic Log 0 Ó Log 1 Ò ZZI 0 Ó ZZI 1 Ò ZZI 1 Ó ZZI 2 Ò ZZI 2 Ó ZZI 3 Ò ZZI 3 Ó ZZI 4 Ò
Volume 41 17 0 38.5 11.5 27 27 11.5 38.5 0

Str. Prop. 0 1 1 0.25 0.75 0.5 0.5 0.75 0.25 1

Table C.1: Metrics for each possible branching decision on 𝑧1 for Log and ZZI applied
to (C.1).

0 2 4 6 8
0

10

20

30

0 2 4 6 8
0

10

20

30

Figure C-1: Feasible region in the p𝑥, 𝑦q-space for the Log formulation (C.2) after:
(Left) down-branching 𝑧1 ď 0, and (Right) up-branching 𝑧1 ě 1.

0 2 4 6 8
0

10

20

30

0 2 4 6 8
0

10

20

30

0 2 4 6 8
0

10

20

30

0 2 4 6 8
0

10

20

30

0 2 4 6 8
0

10

20

30

0 2 4 6 8
0

10

20

30

0 2 4 6 8
0

10

20

30

0.0 2.5 5.0 7.5
0

10

20

30

Figure C-2: Feasible region in the p𝑥, 𝑦q-space for the ZZI formulation (C.3) after:
(Top first column) down-branching on 𝑧1 ď 0, (Bottom first column) up-
branching on 𝑧1 ě 1; (Top second column) down-branching on 𝑧1 ď 1, (Bottom
second column) up-branching on 𝑧1 ě 2; (Top third column) down-branching on
𝑧1 ď 2, (Bottom third column) up-branching on 𝑧1 ě 3; (Top fourth column)
down-branching on 𝑧1 ď 3, and (Bottom fourth column) up-branching on 𝑧1 ě 4.
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Appendix D

Additional computational results with

Gurobi

𝑑 Metric MC CC SOS2 Inc DLog Log LogIB ZZB ZZI

28

Mean (s) 124.6 245.8 1784.8 31.5 27.1 19.8 16.3 19.7 17.0
Std 192.9 321.4 151.9 16.1 15.8 15.3 6.8 11.3 9.3
Win 0 0 0 0 5 16 38 11 30
Fail 0 2 99 0 0 0 0 0 0

59

Mean (s) 619.4 901.2 1800.0 87.3 23.9 27.4 26.3 24.7 20.9
Std 560.3 683.5 - 53.6 19.7 11.8 14.1 16.5 16.1
Win 0 0 0 0 10 9 20 7 54
Fail 12 27 100 0 0 0 0 0 0

Table D.1: Computational results with Gurobi for univariate transportation problems
on large networks with non powers-of-two segments.

• See Table D.1 for univariate computational results on large networks (cf. Ta-

ble 4.3).

• See Table D.2 for bivariate computational results (cf. Table 4.6).
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6-Stencil +
𝜅 Metric MC CC DLog Log ZZB ZZI

4

Mean (s) 1.1 1.8 0.7 0.3 0.3 0.3
Std 0.8 1.6 0.6 0.1 0.1 0.1
Win 0 0 0 43 20 37
Fail 0 0 0 0 0 0

8

Mean (s) 13.0 54.9 12.4 2.1 2.3 2.1
Std 12.5 79.9 14.8 2.2 2.1 1.9
Win 0 0 0 52 19 29
Fail 0 0 0 0 0 0

16

Mean (s) 440.8 1154.9 266.7 16.0 18.7 16.2
Std 560.9 724.3 438.3 21.1 20.6 18.8
Win 0 0 0 45 12 23
Fail 6 39 3 0 0 0

32

Mean (s) 1521.6 1799.0 1291.1 111.6 129.0 121.0
Std 515.6 8.8 599.8 145.8 156.6 163.6
Win 0 0 0 48 10 22
Fail 56 79 38 0 0 0

Table D.2: Computational results with Gurobi for bivariate transportation problems
on grids of size 𝜅 “ 𝑑1 “ 𝑑2.
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